Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Opinion
  • Published:

Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees?

Abstract

Indoleamine-2,3-dioxygenase (IDO) is an immunosuppressive enzyme capable of inhibiting a destructive maternal T cell response against allogeneic fetuses. Expression of IDO is evident in tumours and is thought to enable escape from immunologically mediated rejection. Consequently, clinical trials using an inhibitor of IDO, 1-methyltryptophan (1MT), have been initiated. However, a review of the current literature indicates that we are far from understanding the biological relevance of IDO expression during tumorigenesis. A better understanding of IDO biology is needed to comprehend the effect of IDO inhibitors and to provide a rationale for their therapeutic application in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Indoleamine-2,3-dioxygenase (IDO)-induced tryptophan catabolism along the kynurenine pathway.
Figure 2: Modulation of immune responses by indoleamine-2,3-dioxygenase (IDO)-expressing cells.

Similar content being viewed by others

References

  1. Moffett, J. R. & Namboodiri, M. A. Tryptophan and the immune response. Immunol. Cell Biol. 81, 247–265 (2003).

    CAS  PubMed  Google Scholar 

  2. Pfefferkorn, E. R. Interferon gamma blocks the growth of Toxoplasma gondii in human fibroblasts by inducing the host cells to degrade tryptophan. Proc. Natl Acad. Sci. USA 81, 908–912 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Yoshida, R. & Hayaishi, O. Induction of pulmonary indoleamine 2,3-dioxygenase by intraperitoneal injection of bacterial lipopolysaccharide. Proc. Natl Acad. Sci. USA 75, 3998–4000 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Yoshida, R., Urade, Y., Tokuda, M. & Hayaishi, O. Induction of indoleamine 2,3-dioxygenase in mouse lung during virus infection. Proc. Natl Acad. Sci. USA 76, 4084–4086 (1979).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Munn, D. H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    CAS  PubMed  Google Scholar 

  6. Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Rev. Cancer 5, 263–274 (2005).

    CAS  Google Scholar 

  7. Munn, D. H. et al. Inhibition of T cell proliferation by macrophage tryptophan catabolism. J. Exp. Med. 189, 1363–1372 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, G. K. et al. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107, 452–460 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Munn, D. H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005).

    CAS  PubMed  Google Scholar 

  10. Frumento, G. et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196, 459–468 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Terness, P. et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J. Exp. Med. 196, 447–457 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Fallarino, F. et al. T cell apoptosis by kynurenines. Adv. Exp. Med. Biol. 527, 183–190 (2003).

    CAS  PubMed  Google Scholar 

  13. Chen, W., Liang, X., Peterson, A. J., Munn, D. H. & Blazar, B. R. The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J. Immunol. 181, 5396–5404 (2008).

    CAS  PubMed  Google Scholar 

  14. Hayashi, T. et al. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc. Natl Acad. Sci. USA 104, 18619–18624 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Uyttenhove, C. et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Med. 9, 1269–1274 (2003).

    CAS  PubMed  Google Scholar 

  16. Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E. & Prendergast, G. C. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nature Med. 11, 312–319 (2005).

    CAS  PubMed  Google Scholar 

  17. Prendergast, G. C. Immune escape as a fundamental trait of cancer: focus on IDO. Oncogene 27, 3889–3900 (2008).

    CAS  PubMed  Google Scholar 

  18. Chang, M. Y. et al. Bin1 ablation in mammary gland delays tissue remodeling and drives cancer progression. Cancer Res. 67, 100–107 (2007).

    CAS  PubMed  Google Scholar 

  19. Ge, K. et al. Losses of the tumor suppressor BIN1 in breast carcinoma are frequent and reflect deficits in programmed cell death capacity. Int. J. Cancer 85, 376–383 (2000).

    CAS  PubMed  Google Scholar 

  20. Ge, K. et al. Loss of heterozygosity and tumor suppressor activity of Bin1 in prostate carcinoma. Int. J. Cancer 86, 155–161 (2000).

    CAS  PubMed  Google Scholar 

  21. Chang, M. Y. et al. Bin1 ablation increases susceptibility to cancer during aging, particularly lung cancer. Cancer Res. 67, 7605–7612 (2007).

    CAS  PubMed  Google Scholar 

  22. Tajiri, T. et al. Expression of a MYCN-interacting isoform of the tumor suppressor BIN1 is reduced in neuroblastomas with unfavorable biological features. Clin. Cancer Res. 9, 3345–3355 (2003).

    CAS  PubMed  Google Scholar 

  23. Ge, K. et al. Mechanism for elimination of a tumor suppressor: aberrant splicing of a brain-specific exon causes loss of function of Bin1 in melanoma. Proc. Natl Acad. Sci. USA 96, 9689–9694 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Baban, B. et al. A minor population of splenic dendritic cells expressing CD19 mediates IDO-dependent T cell suppression via type I IFN signaling following B7 ligation. Int. Immunol. 17, 909–919 (2005).

    CAS  PubMed  Google Scholar 

  25. Fallarino, F. et al. Ligand and cytokine dependence of the immunosuppressive pathway of tryptophan catabolism in plasmacytoid dendritic cells. Int. Immunol. 17, 1429–1438 (2005).

    CAS  PubMed  Google Scholar 

  26. Mellor, A. L. et al. Cutting edge: induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion. J. Immunol. 171, 1652–1655 (2003).

    CAS  PubMed  Google Scholar 

  27. Munn, D. H. et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297, 1867–1870 (2002).

    CAS  PubMed  Google Scholar 

  28. Terness, P., Chuang, J. J., Bauer, T., Jiga, L. & Opelz, G. Regulation of human auto- and alloreactive T cells by indoleamine 2,3-dioxygenase (IDO)-producing dendritic cells: too much ado about IDO? Blood 105, 2480–2486 (2005).

    CAS  PubMed  Google Scholar 

  29. Terness, P., Chuang, J. J. & Opelz, G. The immunoregulatory role of IDO-producing human dendritic cells revisited. Trends Immunol. 27, 68–73 (2006).

    CAS  PubMed  Google Scholar 

  30. Löb, S. et al. Are indoleamine-2,3-dioxygenase producing human dendritic cells a tool for suppression of allogeneic T-cell responses? Transplantation 83, 468–473 (2007).

    PubMed  Google Scholar 

  31. Lee, J. R. et al. Pattern of recruitment of immunoregulatory antigen-presenting cells in malignant melanoma. Lab. Invest. 83, 1457–1466 (2003).

    CAS  PubMed  Google Scholar 

  32. Munn, D. H. et al. Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in tumor-draining lymph nodes. J. Clin. Invest. 114, 280–290 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Löb, S. et al. IDO1 and IDO2 are expressed in human tumors: levo- but not dextro-1-methyl tryptophan inhibits tryptophan catabolism. Cancer Immunol. Immunother. 58, 153–157 (2009).

    PubMed  Google Scholar 

  34. Brandacher, G. et al. Prognostic value of indoleamine 2,3-dioxygenase expression in colorectal cancer: effect on tumor-infiltrating T cells. Clin. Cancer Res. 12, 1144–1151 (2006).

    CAS  PubMed  Google Scholar 

  35. Pan, K. et al. Expression and prognosis role of indoleamine 2,3-dioxygenase in hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 134, 1247–1253 (2008).

    CAS  PubMed  Google Scholar 

  36. Ishio, T. et al. Immunoactivative role of indoleamine 2,3-dioxygenase in human hepatocellular carcinoma. J. Gastroenterol. Hepatol. 19, 319–326 (2004).

    CAS  PubMed  Google Scholar 

  37. Riesenberg, R. et al. Expression of indoleamine 2,3-dioxygenase in tumor endothelial cells correlates with long-term survival of patients with renal cell carcinoma. Clin. Cancer Res. 13, 6993–7002 (2007).

    CAS  PubMed  Google Scholar 

  38. Brandacher, G., Winkler, C., Schroecksnadel, K., Margreiter, R. & Fuchs, D. Antitumoral activity of interferon-γ involved in impaired immune function in cancer patients. Curr. Drug Metab. 7, 599–612 (2006).

    CAS  PubMed  Google Scholar 

  39. Melichar, B., Solichova, D. & Freedman, R. S. Neopterin as an indicator of immune activation and prognosis in patients with gynecological malignancies. Int. J. Gynecol. Cancer 16, 240–252 (2006).

    CAS  PubMed  Google Scholar 

  40. Murr, C. et al. Neopterin as a prognostic parameter in patients with squamous-cell carcinomas of the oral cavity. Int. J. Cancer 79, 476–480 (1998).

    CAS  PubMed  Google Scholar 

  41. Murr, C. et al. Neopterin is an independent prognostic variable in females with breast cancer. Clin. Chem. 45, 1998–2004 (1999).

    CAS  PubMed  Google Scholar 

  42. Murr, C. et al. Increased neopterin concentrations in patients with cancer: indicator of oxidative stress? Anticancer Res. 19, 1721–1728 (1999).

    CAS  PubMed  Google Scholar 

  43. Prommegger, R. et al. Neopterin: a prognostic variable in operations for lung cancer. Ann. Thorac Surg. 70, 1861–1864 (2000).

    CAS  PubMed  Google Scholar 

  44. Weinlich, G., Murr, C., Richardsen, L., Winkler, C. & Fuchs, D. Decreased serum tryptophan concentration predicts poor prognosis in malignant melanoma patients. Dermatology 214, 8–14 (2007).

    PubMed  Google Scholar 

  45. Farrar, M. A. & Schreiber, R. D. The molecular cell biology of interferon-γ and its receptor. Annu. Rev. Immunol. 11, 571–611 (1993).

    CAS  PubMed  Google Scholar 

  46. Ozaki, Y., Edelstein, M. P. & Duch, D. S. Induction of indoleamine 2,3-dioxygenase: a mechanism of the antitumor activity of interferon gamma. Proc. Natl Acad. Sci. USA 85, 1242–1246 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Takikawa, O., Kuroiwa, T., Yamazaki, F. & Kido, R. Mechanism of interferon-gamma action. Characterization of indoleamine 2,3-dioxygenase in cultured human cells induced by interferon-gamma and evaluation of the enzyme-mediated tryptophan degradation in its anticellular activity. J. Biol. Chem. 263, 2041–2048 (1988).

    CAS  PubMed  Google Scholar 

  48. Yoshida, R., Park, S. W., Yasui, H. & Takikawa, O. Tryptophan degradation in transplanted tumor cells undergoing rejection. J. Immunol. 141, 2819–2823 (1988).

    CAS  PubMed  Google Scholar 

  49. Yu, W. G. et al. Molecular mechanisms underlying IFN-γ-mediated tumor growth inhibition induced during tumor immunotherapy with rIL-12. Int. Immunol. 8, 855–865 (1996).

    CAS  PubMed  Google Scholar 

  50. Brunda, M. J. et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J. Exp. Med. 178, 1223–1230 (1993).

    CAS  PubMed  Google Scholar 

  51. Nastala, C. L. et al. Recombinant IL-12 administration induces tumor regression in association with IFN-γ production. J. Immunol. 153, 1697–1706 (1994).

    CAS  PubMed  Google Scholar 

  52. Zou, J. P. et al. Systemic administration of rIL-12 induces complete tumor regression and protective immunity: response is correlated with a striking reversal of suppressed IFN-γ production by anti-tumor T cells. Int. Immunol. 7, 1135–1145 (1995).

    CAS  PubMed  Google Scholar 

  53. Friberg, M. et al. Indoleamine 2,3-dioxygenase contributes to tumor cell evasion of T cell-mediated rejection. Int. J. Cancer 101, 151–155 (2002).

    CAS  PubMed  Google Scholar 

  54. Hou, D. Y. et al. Inhibition of indoleamine 2,3-dioxygenase in dendritic cells by stereoisomers of 1-methyl-tryptophan correlates with antitumor responses. Cancer Res. 67, 792–801 (2007).

    CAS  PubMed  Google Scholar 

  55. Windbichler, G. H. et al. Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br. J. Cancer 82, 1138–1144 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Giannopoulos, A. et al. The immunomodulating effect of interferon-γ intravesical instillations in preventing bladder cancer recurrence. Clin. Cancer Res. 9, 5550–5558 (2003).

    CAS  PubMed  Google Scholar 

  57. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    CAS  PubMed  Google Scholar 

  58. Takeshita, F. et al. Cutting edge: Role of Toll-like receptor 9 in CpG DNA-induced activation of human cells. J. Immunol. 167, 3555–3558 (2001).

    CAS  PubMed  Google Scholar 

  59. Speiser, D. E. et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J. Clin. Invest. 115, 739–746 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Mellor, A. L. et al. Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN type 1 signaling. J. Immunol. 175, 5601–5605 (2005).

    CAS  PubMed  Google Scholar 

  61. Wingender, G. et al. Systemic application of CpG-rich DNA suppresses adaptive T cell immunity via induction of IDO. Eur. J. Immunol. 36, 12–20 (2006).

    CAS  PubMed  Google Scholar 

  62. Fallarino, F. & Puccetti, P. Toll-like receptor 9-mediated induction of the immunosuppressive pathway of tryptophan catabolism. Eur. J. Immunol. 36, 8–11 (2006).

    CAS  PubMed  Google Scholar 

  63. Choi, B. K., Asai, T., Vinay, D. S., Kim, Y. H. & Kwon, B. S. 4-1BB-mediated amelioration of experimental autoimmune uveoretinitis is caused by indoleamine 2,3-dioxygenase-dependent mechanisms. Cytokine 34, 233–242 (2006).

    CAS  PubMed  Google Scholar 

  64. Mittler, R. S. et al. Anti-CD137 antibodies in the treatment of autoimmune disease and cancer. Immunol. Res. 29, 197–208 (2004).

    CAS  PubMed  Google Scholar 

  65. Seo, S. K. et al. 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nature Med. 10, 1088–1094 (2004).

    CAS  PubMed  Google Scholar 

  66. Kim, J. A. et al. Divergent effects of 4–1BB antibodies on antitumor immunity and on tumor-reactive T-cell generation. Cancer Res. 61, 2031–2037 (2001).

    CAS  PubMed  Google Scholar 

  67. May, K. F. Jr., Chen, L., Zheng, P. & Liu, Y. Anti-4-1BB monoclonal antibody enhances rejection of large tumor burden by promoting survival but not clonal expansion of tumor-specific CD8+ T cells. Cancer Res. 62, 3459–3465 (2002).

    CAS  PubMed  Google Scholar 

  68. Melero, I., Johnston, J. V., Shufford, W. W., Mittler, R. S. & Chen, L. NK1.1 cells express 4–1BB (CDw137) costimulatory molecule and are required for tumor immunity elicited by anti-4-1BB monoclonal antibodies. Cell. Immunol. 190, 167–172 (1998).

    CAS  PubMed  Google Scholar 

  69. Melero, I. et al. Monoclonal antibodies against the 4–1BB T-cell activation molecule eradicate established tumors. Nature Med. 3, 682–685 (1997).

    CAS  PubMed  Google Scholar 

  70. Nam, K. O., Kang, W. J., Kwon, B. S., Kim, S. J. & Lee, H. W. The therapeutic potential of 4–1BB (CD137) in cancer. Curr. Cancer Drug Targets 5, 357–363 (2005).

    CAS  PubMed  Google Scholar 

  71. Baban, B. et al. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 61, 67–77 (2004).

    CAS  PubMed  Google Scholar 

  72. Knox, W. E. & Mehler, A. H. The conversion of tryptophan to kynurenine in liver. I. The coupled tryptophan peroxidase-oxidase system forming formylkynurenine. J. Biol. Chem. 187, 419–430 (1950).

    CAS  PubMed  Google Scholar 

  73. Minatogawa, Y., Suzuki, S., Ando, Y., Tone, S. & Takikawa, O. Tryptophan pyrrole ring cleavage enzymes in placenta. Adv. Exp. Med. Biol. 527, 425–434 (2003).

    CAS  PubMed  Google Scholar 

  74. Tatsumi, K. et al. Induction of tryptophan 2,3-dioxygenase in the mouse endometrium during implantation. Biochem. Biophys. Res. Commun. 274, 166–170 (2000).

    CAS  PubMed  Google Scholar 

  75. Suzuki, S. et al. Expression of indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase in early concepti. Biochem. J. 355, 425–429 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Britan, A., Maffre, V., Tone, S. & Drevet, J. R. Quantitative and spatial differences in the expression of tryptophan-metabolizing enzymes in mouse epididymis. Cell Tissue Res. 324, 301–310 (2006).

    CAS  PubMed  Google Scholar 

  77. Haber, R., Bessette, D., Hulihan-Giblin, B., Durcan, M. J. & Goldman, D. Identification of tryptophan 2,3-dioxygenase RNA in rodent brain. J. Neurochem. 60, 1159–1162 (1993).

    CAS  PubMed  Google Scholar 

  78. Yamamoto, S. & Hayaishi, O. Tryptophan pyrrolase of rabbit intestine. D- and L-tryptophan-cleaving enzyme or enzymes. J. Biol. Chem. 242, 5260–5266 (1967).

    CAS  PubMed  Google Scholar 

  79. Yoshida, R. et al. Regulation of indoleamine 2,3-dioxygenase activity in the small intestine and the epididymis of mice. Arch. Biochem. Biophys. 203, 343–351 (1980).

    CAS  PubMed  Google Scholar 

  80. Yuasa, H. J. et al. Evolution of vertebrate indoleamine 2,3-dioxygenases. J. Mol. Evol. 65, 705–714 (2007).

    CAS  PubMed  Google Scholar 

  81. Yamane, T., Miller, D. L. & Hopfield, J. J. Discrimination between D- and L-tyrosyl transfer ribonucleic acids in peptide chain elongation. Biochemistry 20, 7059–7064 (1981).

    CAS  PubMed  Google Scholar 

  82. Cady, S. G. & Sono, M. 1-Methyl-DL-tryptophan, beta-(3-benzofuranyl)-DL-alanine (the oxygen analog of tryptophan), and beta-[3-benzo(b)thienyl]-DL-alanine (the sulfur analog of tryptophan) are competitive inhibitors for indoleamine 2,3-dioxygenase. Arch. Biochem. Biophys. 291, 326–333 (1991).

    CAS  PubMed  Google Scholar 

  83. Peterson, A. C. et al. Evaluation of functionalized tryptophan derivates and related compounds as competitive inhibitors of indoleamine 2,3-dioxygenase. Med. Chem. Res. 3, 531–544 (1994).

    CAS  Google Scholar 

  84. Metz, R. et al. Novel tryptophan catabolic enzyme IDO2 is the preferred biochemical target of the antitumor indoleamine 2,3-dioxygenase inhibitory compound D-1-methyl-tryptophan. Cancer Res. 67, 7082–7087 (2007).

    CAS  PubMed  Google Scholar 

  85. Ball, H. J. et al. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice. Gene 396, 203–213 (2007).

    CAS  PubMed  Google Scholar 

  86. Lob, S. et al. Levo- but not dextro-1-methyl tryptophan abrogates the IDO activity of human dendritic cells. Blood 111, 2152–2154 (2008).

    CAS  PubMed  Google Scholar 

  87. Katz, J. B., Muller, A. J. & Prendergast, G. C. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev. 222, 206–221 (2008).

    CAS  PubMed  Google Scholar 

  88. Agaugue, S., Perrin-Cocon, L., Coutant, F., Andre, P. & Lotteau, V. 1-Methyl-tryptophan can interfere with TLR signaling in dendritic cells independently of IDO activity. J. Immunol. 177, 2061–2071 (2006).

    CAS  PubMed  Google Scholar 

  89. Steinman, R. M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    CAS  PubMed  Google Scholar 

  90. Kudo, Y. & Boyd, C. A. Characterisation of L-tryptophan transporters in human placenta: a comparison of brush border and basal membrane vesicles. J. Physiol. 531, 405–416 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Curti, A. et al. Modulation of tryptophan catabolism by human leukemic cells results in the conversion of CD25 into CD25+ T regulatory cells. Blood 109, 2871–2877 (2007).

    CAS  PubMed  Google Scholar 

  92. Okamoto, T. et al. Transcriptional regulation of indoleamine 2,3-dioxygenase (IDO) by tryptophan and its analogue: Down-regulation of the indoleamine 2,3-dioxygenase (IDO) transcription by tryptophan and its analogue. Cytotechnology 54, 107–113 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Alvarez-Salas, L. M. Nucleic acids as therapeutic agents. Curr. Top. Med. Chem. 8, 1379–1404 (2008).

    CAS  PubMed  Google Scholar 

  94. Dalmay, T. MicroRNAs and cancer. J. Intern. Med. 263, 366–375 (2008).

    CAS  PubMed  Google Scholar 

  95. Huang, C., Li, M., Chen, C. & Yao, Q. Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin. Ther. Targets. 12, 637–645 (2008).

    CAS  PubMed  Google Scholar 

  96. Mocellin, S., Costa, R. & Nitti, D. RNA interference: ready to silence cancer? J. Mol. Med. 84, 4–15 (2006).

    CAS  PubMed  Google Scholar 

  97. Moreira, J. N., Santos, A. & Simoes, S. Bcl-2-targeted antisense therapy (Oblimersen sodium): towards clinical reality. Rev. Recent Clin. Trials 1, 217–235 (2006).

    CAS  PubMed  Google Scholar 

  98. Zheng, X. et al. Reinstalling antitumor immunity by inhibiting tumor-derived immunosuppressive molecule IDO through RNA interference. J. Immunol. 177, 5639–5646 (2006).

    CAS  PubMed  Google Scholar 

  99. Jeong, Y. I. et al. (–)-Epigallocatechin gallate suppresses indoleamine 2,3-dioxygenase expression in murine dendritic cells: evidences for the COX-2 and STAT1 as potential targets. Biochem. Biophys. Res. Commun. 354, 1004–1009 (2007).

    CAS  PubMed  Google Scholar 

  100. Lee, H. J. et al. Rosmarinic acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells. Biochem. Pharmacol. 73, 1412–1421 (2007).

    PubMed  Google Scholar 

  101. Kim, S. I. et al. p-Coumaric acid inhibits indoleamine 2,3-dioxygenase expression in murine dendritic cells. Int. Immunopharmacol 7, 805–815 (2007).

    CAS  PubMed  Google Scholar 

  102. Mehta, R. G. et al. Cancer chemopreventive activity of brassinin, a phytoalexin from cabbage. Carcinogenesis 16, 399–404 (1995).

    CAS  PubMed  Google Scholar 

  103. Park, E. J. & Pezzuto, J. M. Botanicals in cancer chemoprevention. Cancer Metastasis Rev. 21, 231–255 (2002).

    CAS  PubMed  Google Scholar 

  104. Banerjee, T. et al. A key in vivo antitumor mechanism of action of natural product-based brassinins is inhibition of indoleamine 2,3-dioxygenase. Oncogene 27, 2851–2857 (2008).

    CAS  PubMed  Google Scholar 

  105. Gaspari, P. et al. Structure-activity study of brassinin derivatives as indoleamine 2,3-dioxygenase inhibitors. J. Med. Chem. 49, 684–692 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Brastianos, H. C. et al. Exiguamine A, an indoleamine-2,3-dioxygenase (IDO) inhibitor isolated from the marine sponge Neopetrosia exigua. J. Am. Chem. Soc. 128, 16046–16047 (2006).

    CAS  PubMed  Google Scholar 

  107. Carr, G., Chung, M. K., Mauk, A. G. & Andersen, R. J. Synthesis of indoleamine 2,3-dioxygenase inhibitory analogues of the sponge alkaloid exiguamine A. J. Med. Chem. 51, 2634–2637 (2008).

    CAS  PubMed  Google Scholar 

  108. Kumar, S. et al. Structure based development of phenylimidazole-derived inhibitors of indoleamine 2,3-dioxygenase. J. Med. Chem. 51, 4968–4977 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Pereira, A., Vottero, E., Roberge, M., Mauk, A. G. & Andersen, R. J. Indoleamine 2,3-dioxygenase inhibitors from the Northeastern Pacific marine hydroid Garveia annulata. J. Nat. Prod. 69, 1496–1499 (2006).

    CAS  PubMed  Google Scholar 

  110. Sugimoto, H. et al. Crystal structure of human indoleamine 2,3-dioxygenase: catalytic mechanism of O2 incorporation by a heme-containing dioxygenase. Proc. Natl Acad. Sci. USA 103, 2611–2616 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Boasso, A. et al. Combined effect of antiretroviral therapy and blockade of IDO in SIV-infected rhesus macaques. J. Immunol. 182, 4313–4320 (2009).

    CAS  PubMed  Google Scholar 

  112. Ogata, S. et al. Apoptosis induced by nicotinamide-related compounds and quinolinic acid in HL-60 cells. Biosci. Biotechnol. Biochem. 64, 327–332 (2000).

    CAS  PubMed  Google Scholar 

  113. Braun, D., Longman, R. S. & Albert, M. L. A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106, 2375–2381 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Lopez, A. S., Alegre, E., Diaz, A., Mugueta, C. & Gonzalez, A. Bimodal effect of nitric oxide in the enzymatic activity of indoleamine 2,3-dioxygenase in human monocytic cells. Immunol. Lett. 106, 163–171 (2006).

    CAS  PubMed  Google Scholar 

  115. Belladonna, M. L. et al. Cutting edge: Autocrine TGF-β sustains default tolerogenesis by IDO-competent dendritic cells. J. Immunol. 181, 5194–5198 (2008).

    CAS  PubMed  Google Scholar 

  116. Gura, T. How embryos may avoid immune attack. Science 281, 1122–1124 (1998).

    CAS  PubMed  Google Scholar 

  117. Kotake, Y. & Masayama, I. The intermediary metabolism of tryptophan XVIII. The mechanism of formation of kynurenine from tryptophan Z. Physiol. Chem. 243, 237–244 (1936).

    CAS  Google Scholar 

  118. Thackray, S. J., Mowat, C. G. & Chapman, S. K. Exploring the mechanism of tryptophan 2,3-dioxygenase. Biochem. Soc. Trans. 36, 1120–1123 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang, Y. et al. Crystal structure and mechanism of tryptophan 2,3-dioxygenase, a heme enzyme involved in tryptophan catabolism and in quinolinate biosynthesis. Biochemistry 46, 145–155 (2007).

    CAS  PubMed  Google Scholar 

  120. Beutelspacher, S. C. et al. Expression of indoleamine 2,3-dioxygenase (IDO) by endothelial cells: implications for the control of alloresponses. Am. J. Transplant 6, 1320–1330 (2006).

    CAS  PubMed  Google Scholar 

  121. Pantoja, L. G., Miller, R. D., Ramirez, J. A., Molestina, R. E. & Summersgill, J. T. Inhibition of Chlamydia pneumoniae replication in human aortic smooth muscle cells by gamma interferon-induced indoleamine 2,3-dioxygenase activity. Infect. Immun. 68, 6478–6481 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Oberdorfer, C., Adams, O., MacKenzie, C. R., De Groot, C. J. & Daubener, W. Role of IDO activation in anti-microbial defense in human native astrocytes. Adv. Exp. Med. Biol. 527, 15–26 (2003).

    PubMed  Google Scholar 

  123. Della Chiesa, M. et al. The tryptophan catabolite L-kynurenine inhibits the surface expression of NKp46- and NKG2D-activating receptors and regulates NK-cell function. Blood 108, 4118–4125 (2006).

    CAS  PubMed  Google Scholar 

  124. Hwu, P. et al. Indoleamine 2,3-dioxygenase production by human dendritic cells results in the inhibition of T cell proliferation. J. Immunol. 164, 3596–3599 (2000).

    CAS  PubMed  Google Scholar 

  125. Fallarino, F. et al. Modulation of tryptophan catabolism by regulatory T cells. Nature Immunol. 4, 1206–1212 (2003).

    CAS  Google Scholar 

  126. Grohmann, U. et al. CTLA-4-Ig regulates tryptophan catabolism in vivo. Nature Immunol. 3, 1097–1101 (2002).

    CAS  Google Scholar 

  127. Grohmann, U. et al. Reverse signaling through GITR ligand enables dexamethasone to activate IDO in allergy. Nature Med. 13, 579–586 (2007).

    CAS  PubMed  Google Scholar 

  128. Orabona, C. et al. CD28 induces immunostimulatory signals in dendritic cells via CD80 and CD86. Nature Immunol. 5, 1134–1142 (2004).

    CAS  Google Scholar 

  129. Fallarino, F. et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells. J. Immunol. 176, 6752–6761 (2006).

    CAS  PubMed  Google Scholar 

  130. Molano, A., Illarionov, P. A., Besra, G. S., Putterman, C. & Porcelli, S. A. Modulation of invariant natural killer T cell cytokine responses by indoleamine 2,3-dioxygenase. Immunol. Lett. 117, 81–90 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Adikari, S. B., Lian, H., Link, H., Huang, Y. M. & Xiao, B. G. Interferon-γ-modified dendritic cells suppress B cell function and ameliorate the development of experimental autoimmune myasthenia gravis. Clin. Exp. Immunol. 138, 230–236 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Ino, K. et al. Indoleamine 2,3-dioxygenase is a novel prognostic indicator for endometrial cancer. Br. J. Cancer 95, 1555–1561 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Takao, M. et al. Increased synthesis of indoleamine-2,3-dioxygenase protein is positively associated with impaired survival in patients with serous-type, but not with other types of, ovarian cancer. Oncol. Rep. 17, 1333–1339 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. Dennehy for substantial help with editing the manuscript. S.L. was supported by a Fortüne grant of from the University of Tübingen, Tübingen, Germany (1767-0-0).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

Related links

DATABASES

ClinicalTrials.gov

NCT00461110

NCT00567931

NCT00612664

National Cancer Institute Drug Dictionary

D-1MT

FURTHER INFORMATION

New link genetics corporation

Patents

Rights and permissions

Reprints and permissions

About this article

Cite this article

Löb, S., Königsrainer, A., Rammensee, HG. et al. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees?. Nat Rev Cancer 9, 445–452 (2009). https://doi.org/10.1038/nrc2639

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrc2639

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing