Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells

Abstract

In Xenopus laevis egg extracts, TPX2 is required for the Ran-GTP-dependent assembly of microtubules around chromosomes. Here we show that interfering with the function of the human homologue of TPX2 in HeLa cells causes defects in microtubule organization during mitosis. Suppressing the expression of human TPX2 by RNA interference leads to the formation of two microtubule asters that do not interact and do not form a spindle. Our results suggest that in vivo, even in the presence of duplicated centrosomes, spindle formation requires the function of TPX2 to generate a stable bipolar spindle with overlapping antiparallel microtubule arrays. This indicates that chromosome-induced microtubule production is a general requirement for the formation of functional spindles in animal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recombinant human TPX2 rescues spindle assembly in egg extracts.
Figure 2: Localization of hTPX2 in HeLa cells.
Figure 3: Localization of hTPX2 during the cell cycle in HeLa cells.
Figure 4: Overexpression of GFP–hTPX2 causes defects in microtubule organization.
Figure 5: Antibodies against hTPX2 inhibit spindle formation.
Figure 6: Suppression of hTPX2 expression by siRNA blocks spindle formation.
Figure 7: TPX2 depletion abolishes microtubule nucleation but not stabilization.
Figure 8: Chromosome-induced microtubule assembly is required for spindle assembly.

Similar content being viewed by others

References

  1. Wittmann, T., Hyman, A. & Desai, A. The spindle: a dynamic assembly of microtubules and motors. Nature Cell Biol. 3, E28–E34 (2001).

    Article  CAS  Google Scholar 

  2. Compton, D. A. Spindle assembly in animal cells. Annu. Rev. Biochem. 69, 95–114 (2000).

    Article  CAS  Google Scholar 

  3. Kirschner, M. & Mitchison, T. Beyond self-assembly: from microtubules to morphogenesis. Cell 45, 329–342 (1986).

    Article  CAS  Google Scholar 

  4. Karsenti, E. & Vernos, I. The mitotic spindle: a self-made machine. Science 294, 543–547 (2001).

    Article  CAS  Google Scholar 

  5. Heald, R. et al. Self-organization of microtubules into bipolar spindles around artificial chromosomes in Xenopus egg extracts. Nature 382, 420–425 (1996).

    Article  CAS  Google Scholar 

  6. Walczak, C. E., Vernos, I., Mitchison, T. J., Karsenti, E. & Heald, R. A model for the proposed roles of different microtubule-based motor proteins in establishing spindle bipolarity. Curr. Biol. 8, 903–913 (1998).

    Article  CAS  Google Scholar 

  7. Hetzer, M., Gruss, O. J. & Mattaj, I. W. The Ran GTPase as a marker for chromosome position in spindle formation and nuclear envelope assembly. Nature Cell Biol. 4, E177–E184 (2002).

    Article  CAS  Google Scholar 

  8. Dasso, M. Running on Ran: nuclear transport and the mitotic spindle. Cell 104, 321–324 (2001).

    Article  CAS  Google Scholar 

  9. Carazo-Salas, R. E. et al. Generation of GTP-bound Ran by RCC1 is required for chromatin-induced mitotic spindle formation. Nature 400, 178–181 (1999).

    Article  CAS  Google Scholar 

  10. Kalab, P., Pu, R. T. & Dasso, M. The Ran GTPase regulates mitotic spindle assembly. Curr. Biol. 9, 481–484 (1999).

    Article  CAS  Google Scholar 

  11. Ohba, T., Nakamura, M., Nishitani, H. & Nishimoto, T. Self-organization of microtubule asters induced in Xenopus egg extracts by GTP-bound Ran. Science 284, 1356–1358 (1999).

    Article  CAS  Google Scholar 

  12. Wilde, A. & Zheng, Y. Stimulation of microtubule aster formation and spindle assembly by the small GTPase Ran. Science 284, 1359–1362 (1999).

    Article  CAS  Google Scholar 

  13. Zhang, C., Hughes, M. & Clarke, P. R. Ran-GTP stabilises microtubule asters and inhibits nuclear assembly in Xenopus egg extracts. J. Cell Sci. 112, 2453–2461 (1999).

    CAS  PubMed  Google Scholar 

  14. Kalab, P., Weis, K. & Heald, R. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295, 2452–2456 (2002).

    Article  CAS  Google Scholar 

  15. Carazo-Salas, R. E., Gruss, O. J., Mattaj, I. W. & Karsenti, E. Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly. Nature Cell Biol. 3, 228–234 (2001).

    Article  CAS  Google Scholar 

  16. Gruss, O. J. et al. Ran induces spindle assembly by reversing the inhibitory effect of importin α on TPX2 activity. Cell 104, 83–93 (2001).

    Article  CAS  Google Scholar 

  17. Nachury, M. V. et al. Importin β is a mitotic target of the small GTPase Ran in spindle assembly. Cell 104, 95–106 (2001).

    Article  CAS  Google Scholar 

  18. Wiese, C. et al. Role of importin-β in coupling Ran to downstream targets in microtubule assembly. Science 291, 653–656 (2001).

    Article  CAS  Google Scholar 

  19. Khodjakov, A., Cole, R. W., Oakley, B. R. & Rieder, C. L. Centrosome-independent mitotic spindle formation in vertebrates. Curr. Biol. 10, 59–67 (2000).

    Article  CAS  Google Scholar 

  20. Vaizel-Ohayon, D. & Schejter, E. D. Mutations in centrosomin reveal requirements for centrosomal function during early Drosophila embryogenesis. Curr. Biol. 9, 889–898 (1999).

    Article  CAS  Google Scholar 

  21. Megraw, T. L., Kao, L. R. & Kaufman, T. C. Zygotic development without functional mitotic centrosomes. Curr. Biol. 11, 116–120 (2001).

    Article  CAS  Google Scholar 

  22. Bonaccorsi, S., Giansanti, M. G. & Gatti, M. Spindle assembly in Drosophila neuroblasts and ganglion mother cells. Nature Cell Biol. 2, 54–56 (2000).

    Article  CAS  Google Scholar 

  23. Bonaccorsi, S., Giansanti, M. G. & Gatti, M. Spindle self-organization and cytokinesis during male meiosis in asterless mutants of Drosophila melanogaster. J. Cell Biol. 142, 751–761 (1998).

    Article  CAS  Google Scholar 

  24. Llamazares, S., Tavosanis, G. & Gonzalez, C. Cytological characterisation of the mutant phenotypes produced during early embryogenesis by null and loss-of-function alleles of the gammaTub37C gene in Drosophila. J. Cell Sci. 112, 659–667 (1999).

    CAS  PubMed  Google Scholar 

  25. Wittmann, T., Wilm, M., Karsenti, E. & Vernos, I. TPX2, A novel Xenopus MAP involved in spindle pole organization. J. Cell Biol. 149, 1405–1418 (2000).

    Article  CAS  Google Scholar 

  26. Heidebrecht, H. J. et al. p100: a novel proliferation-associated nuclear protein specifically restricted to cell cycle phases S, G2, and M. Blood 90, 226–233 (1997).

    CAS  PubMed  Google Scholar 

  27. Cassimeris, L. & Spittle, C. Regulation of microtubule-associated proteins. Int. Rev. Cytol. 210, 163–226 (2001).

    Article  CAS  Google Scholar 

  28. Wilde, A. et al. Ran stimulates spindle assembly by altering microtubule dynamics and the balance of motor activities. Nature Cell Biol. 3, 221–227 (2001).

    Article  CAS  Google Scholar 

  29. Bamba, C., Bobinnec, Y., Fukuda, M. & Nishida, E. The GTPase Ran regulates chromosome positioning and nuclear envelope assembly in vivo. Curr. Biol. 12, 503–507 (2002).

    Article  CAS  Google Scholar 

  30. Wittmann, T., Boleti, H., Antony, C., Karsenti, E. & Vernos, I. Localization of the kinesin-like protein Xklp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynein. J. Cell Biol. 143, 673–685 (1998).

    Article  CAS  Google Scholar 

  31. Weis, K., Dingwall, C. & Lamond, A. I. Characterization of the nuclear protein import mechanism using Ran mutants with altered nucleotide binding specificities. EMBO J. 15, 7120–7128 (1996).

    Article  CAS  Google Scholar 

  32. Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 277, 680–685 (1970).

    Article  Google Scholar 

  33. Zieve, G. W., Turnbull, D., Mullins, J. M. & McIntosh, J. R. Production of large numbers of mitotic mammalian cells by use of the reversible microtubule inhibitor nocodazole. Nocodazole accumulated mitotic cells. Exp. Cell. Res. 126, 397–405 (1980).

    Article  CAS  Google Scholar 

  34. Pepperkok, R., Saffrich, R. & Ansorge, W. in Cell Biology: A Laboratory Handbook (ed. Celis, J. E.) 23–36 (Academic, San Diego, CA, 1998).

    Google Scholar 

  35. Murray, A. in Xenopus laevis: Practical Uses in Cell and Molecular Biology (eds Kay, B. K. & Peng, H. B.) 581–605 (Academic, San Diego, 1991).

    Book  Google Scholar 

  36. Sawin, K. E. & Mitchison, T. J. Mitotic spindle assembly by two different pathways in vitro. J. Cell Biol. 112, 925–940 (1991).

    Article  CAS  Google Scholar 

  37. Bornens, M., Paintrand, M., Berges, J., Marty, M. C. & Karsenti, E. Structural and chemical characterization of isolated centrosomes. Cell Motil. Cytoskel. 8, 238–249 (1987).

    Article  CAS  Google Scholar 

  38. Stein, G. S. et al. in Cell Biology: A Laboratory Handbook (ed. Celis, J. E.) 282–287 (Academic, San Diego, 1994).

    Google Scholar 

  39. Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Zimmermann for help with confocal microscopes and image acquisition, and E. Nigg for sharing unpublished data. This work was funded by the European Molecular Biology Laboratory (EMBL). O.J.G. was supported in part by a Deutsche Forschungsgemeinschaft fellowship and in part by an EMBL postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Vernos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gruss, O., Wittmann, M., Yokoyama, H. et al. Chromosome-induced microtubule assembly mediated by TPX2 is required for spindle formation in HeLa cells. Nat Cell Biol 4, 871–879 (2002). https://doi.org/10.1038/ncb870

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing