Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma

Autocrine amplification of immature myeloid cells by IL-6 in multiple myeloma-infiltrated bone marrow

Abstract

Multiple myeloma (MM) invariably develops in the bone marrow (BM), indicating the strong requirement of this tumor for the peculiar BM microenvironment, rich in cytokine and hematopoietic precursor cells. Interleukin-6 (IL-6) and a proliferation inducing ligand (APRIL) are key cytokines implicated in MM development. Here, we show that MM cells changed the hematopoietic microenvironment early upon BM infiltration by strongly downregulating hematopoietic precursor cells from all lineages except myeloid precursor cells. Myeloid precursor cells constituted a major source of APRIL in MM-infiltrated BM, and their proliferative response to IL-6 upregulation explained their relative resistance to MM infiltration. The osteolytic molecule receptor activator of NF-kB ligand (RANK-L) expressed by MM cells started this myeloid proliferation by inducing in a contact-dependent manner IL-6 production by myeloid precursor cells themselves. Taken together, our data demonstrate that MM cells do not simply displace hematopoietic cells upon BM infiltration, but rather selectively modulate the BM microenvironment to preserve a pool of high APRIL-producing myeloid precursor cells. Our data also identify a positive regulation of APRIL by IL-6 in myeloid precursor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Schneider P . The role of APRIL and BAFF in lymphocyte activation. Curr Opin Immunol 2005; 17: 282–289.

    Article  CAS  PubMed  Google Scholar 

  2. Matthes T, McKee T, Dunand-Sauthier I, Manfroi B, Park S, Passweg J et al. Myelopoiesis dysregulation associated to sustained APRIL production in multiple myeloma-infiltrative bone marrow. Leukemia 2015; e-pub ahead of print 10 March 2015; 10.1038/leu.2015.68.

  3. Moreaux J, Legouffe E, Jourdan E, Quittet P, Reme T, Lugagne C et al. BAFF and APRIL protect myeloma cells from apoptosis induced by interleukin 6 deprivation and dexamethasone. Blood 2004; 103: 3148–3157.

    Article  CAS  PubMed  Google Scholar 

  4. Matthes T, Dunand-Sauthier I, Santiago-Raber ML, Krause KH, Donze O, Passweg J et al. Production of the plasma-cell survival factor a proliferation-inducing ligand (APRIL) peaks in myeloid precursor cells from human bone marrow. Blood 2011; 118: 1838–1844.

    Article  CAS  PubMed  Google Scholar 

  5. Borregaard N . Neutrophils, from marrow to microbes. Immunity 33: 657–670.

    Article  CAS  PubMed  Google Scholar 

  6. Podar K, Chauhan D, Anderson KC . Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009; 23: 10–24.

    Article  CAS  PubMed  Google Scholar 

  7. Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 1988; 332: 83–85.

    Article  CAS  PubMed  Google Scholar 

  8. Klein B, Zhang XG, Lu ZY, Bataille R . Interleukin-6 in human multiple myeloma. Blood 1995; 85: 863–872.

    CAS  PubMed  Google Scholar 

  9. Jourdan M, Veyrune JL, De Vos J, Redal N, Couderc G, Klein B . A major role for Mcl-1 antiapoptotic protein in the IL-6-induced survival of human myeloma cells. Oncogene 2003; 22: 2950–2959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chauhan D, Pandey P, Hideshima T, Treon S, Raje N, Davies FE et al. SHP2 mediates the protective effect of interleukin-6 against dexamethasone-induced apoptosis in multiple myeloma cells. J Biol Chem 2000; 275: 27845–27850.

    CAS  PubMed  Google Scholar 

  11. van Zaanen HC, Lokhorst HM, Aarden LA, Rensink HJ, Warnaar SO, van der Lelie J et al. Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study. Br J Haematol 1998; 102: 783–790.

    Article  CAS  PubMed  Google Scholar 

  12. San-Miguel J, Blade J, Shpilberg O, Grosicki S, Maloisel F, Min CK et al. Phase 2 randomized study of bortezomib-melphalan-prednisone with or without siltuximab (anti-IL-6) in multiple myeloma. Blood 2014; 123: 4136–4142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Klein B, Zhang XG, Jourdan M, Content J, Houssiau F, Aarden L et al. Paracrine rather than autocrine regulation of myeloma-cell growth and differentiation by interleukin-6. Blood 1989; 73: 517–526.

    CAS  PubMed  Google Scholar 

  14. Rosean TR, Tompkins VS, Olivier AK, Sompallae R, Norian LA, Morse HC 3rd et al. The tumor microenvironment is the main source of IL-6 for plasma cell tumor development in mice. Leukemia 2014; 29: 233–237.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hofgaard PO, Jodal HC, Bommert K, Huard B, Caers J, Carlsen H et al. A novel mouse model for multiple myeloma (MOPC315.BM) that allows noninvasive spatiotemporal detection of osteolytic disease. PLoS One 2012; 7: e51892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Preynat-Seauve O, Contassot E, Schuler P, Piguet V, French LE, Huard B . Extralymphatic tumors prepare draining lymph nodes to invasion via a T-cell cross-tolerance process. Cancer Res 2007; 67: 5009–5016.

    Article  CAS  PubMed  Google Scholar 

  17. Biermann H, Pietz B, Dreier R, Schmid KW, Sorg C, Sunderkotter C . Murine leukocytes with ring-shaped nuclei include granulocytes, monocytes, and their precursors. J Leukoc Biol 1999; 65: 217–231.

    Article  CAS  PubMed  Google Scholar 

  18. Maeda K, Malykhin A, Teague-Weber BN, Sun XH, Farris AD, Coggeshall KM . Interleukin-6 aborts lymphopoiesis and elevates production of myeloid cells in systemic lupus erythematosus-prone B6.Sle1.Yaa animals. Blood 2009; 113: 4534–4540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Welniak LA, Karas M, Yakar S, Anver MR, Murphy WJ, LeRoith D . Effects of organ-specific loss of insulin-like growth factor-I production on murine hematopoiesis. Biol Blood Marrow Transplant 2004; 10: 32–39.

    Article  CAS  PubMed  Google Scholar 

  20. Berardi AC, Wang A, Abraham J, Scadden DT . Basic fibroblast growth factor mediates its effects on committed myeloid progenitors by direct action and has no effect on hematopoietic stem cells. Blood 1995; 86: 2123–2129.

    CAS  PubMed  Google Scholar 

  21. Johnson CS, Keckler DJ, Topper MI, Braunschweiger PG, Furmanski P . In vivo hematopoietic effects of recombinant interleukin-1 alpha in mice: stimulation of granulocytic, monocytic, megakaryocytic, and early erythroid progenitors, suppression of late-stage erythropoiesis, and reversal of erythroid suppression with erythropoietin. Blood 1989; 73: 678–683.

    CAS  PubMed  Google Scholar 

  22. Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S et al. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. Blood 1998; 92: 4150–4166.

    CAS  PubMed  Google Scholar 

  23. Dybedal I, Bryder D, Fossum A, Rusten LS, Jacobsen SE . Tumor necrosis factor (TNF)-mediated activation of the p55 TNF receptor negatively regulates maintenance of cycling reconstituting human hematopoietic stem cells. Blood 2001; 98: 1782–1791.

    Article  CAS  PubMed  Google Scholar 

  24. Broxmeyer HE, Cooper S, Kohli L, Hangoc G, Lee Y, Mantel C et al. Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo. J Immunol 2003; 170: 421–429.

    Article  CAS  PubMed  Google Scholar 

  25. Uchiyama H, Barut BA, Mohrbacher AF, Chauhan D, Anderson KC . Adhesion of human myeloma-derived cell lines to bone marrow stromal cells stimulates interleukin-6 secretion. Blood 1993; 82: 3712–3720.

    CAS  PubMed  Google Scholar 

  26. Lai FP, Cole-Sinclair M, Cheng WJ, Quinn JM, Gillespie MT, Sentry JW et al. Myeloma cells can directly contribute to the pool of RANKL in bone bypassing the classic stromal and osteoblast pathway of osteoclast stimulation. Br J Haematol 2004; 126: 192–201.

    Article  CAS  PubMed  Google Scholar 

  27. Josien R, Wong BR, Li HL, Steinman RM, Choi Y . TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol 1999; 162: 2562–2568.

    CAS  PubMed  Google Scholar 

  28. van Zaanen HC, Koopmans RP, Aarden LA, Rensink HJ, Stouthard JM, Warnaar SO et al. Endogenous interleukin 6 production in multiple myeloma patients treated with chimeric monoclonal anti-IL6 antibodies indicates the existence of a positive feed-back loop. J Clin Invest 1996; 98: 1441–1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Karadag A, Oyajobi BO, Apperley JF, Russell RG, Croucher PI . Human myeloma cells promote the production of interleukin 6 by primary human osteoblasts. Br J Haematol 2000; 108: 383–390.

    Article  CAS  PubMed  Google Scholar 

  30. Lokhorst HM, Lamme T, de Smet M, Klein S, de Weger RA, van Oers R et al. Primary tumor cells of myeloma patients induce interleukin-6 secretion in long-term bone marrow cultures. Blood 1994; 84: 2269–2277.

    CAS  PubMed  Google Scholar 

  31. Portier M, Rajzbaum G, Zhang XG, Attal M, Rusalen C, Wijdenes J et al. In vivo interleukin 6 gene expression in the tumoral environment in multiple myeloma. Eur J Immunol 1991; 21: 1759–1762.

    Article  CAS  PubMed  Google Scholar 

  32. Wong D, Winter O, Hartig C, Siebels S, Szyska M, Tiburzy B et al. Eosinophils and megakaryocytes support the early growth of murine MOPC315 myeloma cells in their bone marrow niches. PLoS One 2014; 9: e109018.

    Article  PubMed  PubMed Central  Google Scholar 

  33. de Vries TJ, Schoenmaker T, Hooibrink B, Leenen PJ, Everts V . Myeloid blasts are the mouse bone marrow cells prone to differentiate into osteoclasts. J Leukoc Biol 2009; 85: 919–927.

    Article  CAS  PubMed  Google Scholar 

  34. Arai F, Miyamoto T, Ohneda O, Inada T, Sudo T, Brasel K et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med 1999; 190: 1741–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jagannath S, Kyle RA, Palumbo A, Siegel DS, Cunningham S, Berenson J . The current status and future of multiple myeloma in the clinic. Clin Lymphoma Myeloma Leuk 2010; 10: E1–16.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Henri Dubois Ferrière/Dinu Lipatti Foundation, the Swiss Cancer League, the INSERM and the Grenoble-Alpes University. We thank Patrice Marche for his critical reading of the manuscript.

Author contributions

ID-S, AZ, BM and BH performed experiments. TM and BB provided reagents. TM and BH analyzed data and wrote the manuscript. BH designed the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Huard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matthes, T., Manfroi, B., Zeller, A. et al. Autocrine amplification of immature myeloid cells by IL-6 in multiple myeloma-infiltrated bone marrow. Leukemia 29, 1882–1890 (2015). https://doi.org/10.1038/leu.2015.145

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2015.145

This article is cited by

Search

Quick links