Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

A novel Bruton’s tyrosine kinase inhibitor CC-292 in combination with the proteasome inhibitor carfilzomib impacts the bone microenvironment in a multiple myeloma model with resultant antimyeloma activity

Abstract

Bruton’s tyrosine kinase (Btk) modulates B-cell development and activation and has an important role in antibody production. Interestingly, Btk may also affect human osteoclast (OC) function; however, the mechanism was unknown. Here we studied a potent and specific Btk inhibitor, CC-292, in multiple myeloma (MM). In this report, we demonstrate that, although CC-292 increased OC differentiation, it inhibited OC function via inhibition of c-Src, Pyk2 and cortactin, all involved in OC-sealing zone formation. As CC-292 did not show potent in vitro anti-MM activity, we next evaluated it in combination with the proteasome inhibitor, carfilzomib. We first studied the effect of carfilzomib on OC. Carfilzomib did not have an impact on OC-sealing zone formation but significantly inhibited OC differentiation. CC-292 combined with carfilzomib inhibited both sealing zone formation and OC differentiation, resulting in more profound inhibition of OC function than carfilzomib alone. Moreover, the combination treatment in an in vivo MM mouse model inhibited tumor burden compared with CC-292 alone; it also increased bone volume compared with carfilzomib alone. These results suggest that CC-292 combined with carfilzomib augments the inhibitory effects against OC within the bone microenvironment and has promising therapeutic potential for the treatment of MM and related bone disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Satterthwaite AB, Witte ON . The role of Bruton’s tyrosine kinase in B-cell development and function: a genetic perspective. Immunol Rev 2000; 175: 120–127.

    Article  CAS  Google Scholar 

  2. Ng YY, Baert MR, Pike-Overzet K, Rodijk M, Brugman MH, Schambach A et al. Correction of B-cell development in Btk-deficient mice using lentiviral vectors with codon-optimized human BTK. Leukemia 2010; 24: 1617–1630.

    Article  CAS  Google Scholar 

  3. Brown JR . Ibrutinib in chronic lymphocytic leukemia and B cell malignancies. Leuk Lymphoma 2013; 55: 263–269.

    Article  Google Scholar 

  4. Shinohara M, Koga T, Okamoto K, Sakaguchi S, Arai K, Yasuda H et al. Tyrosine kinases Btk and Tec regulate osteoclast differentiation by linking RANK and ITAM signals. Cell 2008; 132: 794–806.

    Article  CAS  Google Scholar 

  5. Danks L, Workman S, Webster D, Horwood NJ . Elevated cytokine production restores bone resorption by human Btk-deficient osteoclasts. J Bone Miner Res 2011; 26: 182–192.

    Article  CAS  Google Scholar 

  6. Tai YT, Chang BY, Kong SY, Fulciniti M, Yang G, Calle Y et al. Bruton tyrosine kinase inhibition is a novel therapeutic strategy targeting tumor in the bone marrow microenvironment in multiple myeloma. Blood 2012; 120: 1877–1887.

    Article  CAS  Google Scholar 

  7. Mahindra A, Hideshima T, Anderson KC . Multiple myeloma: biology of the disease. Blood Rev 2010; 24 (Suppl 1): S5–S11.

    Article  Google Scholar 

  8. Kyle RA, Rajkumar SV . Multiple myeloma. Blood 2008; 111: 2962–2972.

    Article  CAS  Google Scholar 

  9. Coleman RE . Skeletal complications of malignancy. Cancer 1997; 80: 1588–1594.

    Article  CAS  Google Scholar 

  10. Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R . Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 2007; 110: 1860–1867.

    Article  Google Scholar 

  11. Roodman GD . Pathogenesis of myeloma bone disease. J Cell Biochem 2010; 109: 283–291.

    CAS  Google Scholar 

  12. Vallet S, Mukherjee S, Vaghela N, Hideshima T, Fulciniti M, Pozzi S et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci USA 2010; 107: 5124–5129.

    Article  CAS  Google Scholar 

  13. Vallet S, Smith MR, Raje N . Novel bone-targeted strategies in oncology. Clin Cancer Res 2010; 16: 4084–4093.

    Article  CAS  Google Scholar 

  14. Vallet S, Raje N . Bone anabolic agents for the treatment of multiple myeloma. Cancer Microenviron 2011; 4: 339–349.

    Article  CAS  Google Scholar 

  15. Podar K, Chauhan D, Anderson KC . Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009; 23: 10–24.

    Article  CAS  Google Scholar 

  16. Edwards CM, Zhuang J, Mundy GR . The pathogenesis of the bone disease of multiple myeloma. Bone 2008; 42: 1007–1013.

    Article  CAS  Google Scholar 

  17. Scullen T, Santo L, Vallet S, Fulciniti M, Eda H, Cirstea D et al. Lenalidomide in combination with an activin A-neutralizing antibody: preclinical rationale for a novel anti-myeloma strategy. Leukemia 2013; 27: 1715–1721.

    Article  CAS  Google Scholar 

  18. Evans EK, Tester R, Aslanian S, Karp R, Sheets M, Labenski MT et al. Inhibition of Btk with CC-292 Provides Early Pharmacodynamic Assessment of Activity in Mice and Humans. J Pharmacol Exp Ther 2013; 346: 219–228.

    Article  CAS  Google Scholar 

  19. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood 2007; 110: 3281–3290.

    Article  CAS  Google Scholar 

  20. Jagannath S, Vij R, Stewart AK, Trudel S, Jakubowiak AJ, Reiman T et al. An open-label single-arm pilot phase II study (PX-171-003-A0) of low-dose, single-agent carfilzomib in patients with relapsed and refractory multiple myeloma. Clin Lymphoma Myeloma Leuk 2012; 12: 310–318.

    Article  CAS  Google Scholar 

  21. Siegel DS, Martin T, Wang M, Vij R, Jakubowiak AJ, Lonial S et al. A phase 2 study of single-agent carfilzomib (PX-171-003-A1) in patients with relapsed and refractory multiple myeloma. Blood 2012; 120: 2817–2825.

    Article  CAS  Google Scholar 

  22. Hurchla MA, Garcia-Gomez A, Hornick MC, Ocio EM, Li A, Blanco JF et al. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia 2013; 27: 430–440.

    Article  CAS  Google Scholar 

  23. Badros AZ, Vij R, Martin T, Zonder JA, Kunkel L, Wang Z et al. Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia 2013; 27: 1707–1714.

    Article  CAS  Google Scholar 

  24. Jakubowiak AJ, Siegel DS, Martin T, Wang M, Vij R, Lonial S et al. Treatment outcomes in patients with relapsed and refractory multiple myeloma and high-risk cytogenetics receiving single-agent carfilzomib in the PX-171-003-A1 study. Leukemia 2013; 27: 2351–2356.

    Article  CAS  Google Scholar 

  25. Raje N, Hideshima T, Mukherjee S, Raab M, Vallet S, Chhetri S et al. Preclinical activity of P276-00, a novel small-molecule cyclin-dependent kinase inhibitor in the therapy of multiple myeloma. Leukemia 2009; 23: 961–970.

    Article  CAS  Google Scholar 

  26. Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 2012; 119: 2579–2589.

    Article  CAS  Google Scholar 

  27. Cirstea D, Hideshima T, Santo L, Eda H, Mishima Y, Nemani N et al. Small-molecule multi-targeted kinase inhibitor RGB-286638 triggers P53-dependent and -independent anti-multiple myeloma activity through inhibition of transcriptional CDKs. Leukemia 2013; 27: 2366–2375.

    Article  CAS  Google Scholar 

  28. Vallet S, Raje N, Ishitsuka K, Hideshima T, Podar K, Chhetri S et al. MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood 2007; 110: 3744–3752.

    Article  CAS  Google Scholar 

  29. Eda H, Aoki K, Kato S, Okawa Y, Takada K, Tanaka T et al. The proteasome inhibitor bortezomib inhibits FGF-2-induced reduction of TAZ levels in osteoblast-like cells. Eur J Haematol 2010; 85: 68–75.

    CAS  Google Scholar 

  30. Watanabe D, Hashimoto S, Ishiai M, Matsushita M, Baba Y, Kishimoto T et al. Four tyrosine residues in phospholipase C-gamma 2, identified as Btk-dependent phosphorylation sites, are required for B cell antigen receptor-coupled calcium signaling. J Biol Chem 2001; 276: 38595–38601.

    Article  CAS  Google Scholar 

  31. Easom RA . CaM kinase II: a protein kinase with extraordinary talents germane to insulin exocytosis. Diabetes 1999; 48: 675–684.

    Article  CAS  Google Scholar 

  32. Wong BR, Besser D, Kim N, Arron JR, Vologodskaia M, Hanafusa H et al. TRANCE, a TNF family member, activates Akt/PKB through a signaling complex involving TRAF6 and c-Src. Mol Cell 1999; 4: 1041–1049.

    Article  CAS  Google Scholar 

  33. Soriano P, Montgomery C, Geske R, Bradley A . Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 1991; 64: 693–702.

    Article  CAS  Google Scholar 

  34. Insogna KL, Sahni M, Grey AB, Tanaka S, Horne WC, Neff L et al. Colony-stimulating factor-1 induces cytoskeletal reorganization and c-src-dependent tyrosine phosphorylation of selected cellular proteins in rodent osteoclasts. J Clin Invest 1997; 100: 2476–2485.

    Article  CAS  Google Scholar 

  35. Duong LT, Lakkakorpi PT, Nakamura I, Machwate M, Nagy RM, Rodan GA . PYK2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activated by ligation of alpha(v)beta3 integrin, and phosphorylated by src kinase. J Clin Invest 1998; 102: 881–892.

    Article  CAS  Google Scholar 

  36. Lakkakorpi PT, Bett AJ, Lipfert L, Rodan GA, Duong le T . PYK2 autophosphorylation, but not kinase activity, is necessary for adhesion-induced association with c-Src, osteoclast spreading, and bone resorption. J Biol Chem 2003; 278: 11502–11512.

    Article  CAS  Google Scholar 

  37. Yokouchi M, Kondo T, Sanjay A, Houghton A, Yoshimura A, Komiya S et al. Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem 2001; 276: 35185–35193.

    Article  CAS  Google Scholar 

  38. Uruno T, Liu J, Zhang P, Fan Y, Egile C, Li R et al. Activation of Arp2/3 complex-mediated actin polymerization by cortactin. Nat Cell Biol 2001; 3: 259–266.

    Article  CAS  Google Scholar 

  39. Hodges RR, Rios JD, Vrouvlianis J, Ota I, Zoukhri D, Dartt DA . Roles of protein kinase C, Ca2+, Pyk2, and c-Src in agonist activation of rat lacrimal gland p42/p44 MAPK. Invest Ophthalmol Vis Sci 2006; 47: 3352–3359.

    Article  Google Scholar 

  40. Hodges RR, Horikawa Y, Rios JD, Shatos MA, Dartt DA . Effect of protein kinase C and Ca(2+) on p42/p44 MAPK, Pyk2, and Src activation in rat conjunctival goblet cells. Exp Eye Res 2007; 85: 836–844.

    Article  CAS  Google Scholar 

  41. Chauhan D, Auclair D, Robinson EK, Hideshima T, Li G, Podar K et al. Identification of genes regulated by dexamethasone in multiple myeloma cells using oligonucleotide arrays. Oncogene 2002; 21: 1346–1358.

    Article  CAS  Google Scholar 

  42. Krikos A, Laherty CD, Dixit VM . Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J Biol Chem 1992; 267: 17971–17976.

    CAS  Google Scholar 

  43. Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H et al. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J Exp Med 2005; 202: 1261–1269.

    Article  CAS  Google Scholar 

  44. Garnero P, Ferreras M, Karsdal MA, Nicamhlaoibh R, Risteli J, Borel O et al. The type I collagen fragments ICTP and CTX reveal distinct enzymatic pathways of bone collagen degradation. J Bone Miner Res 2003; 18: 859–867.

    Article  CAS  Google Scholar 

  45. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993; 72: 279–290.

    Article  CAS  Google Scholar 

  46. Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 1993; 361: 226–233.

    Article  CAS  Google Scholar 

  47. Smith CI, Baskin B, Humire-Greiff P, Zhou JN, Olsson PG, Maniar HS et al. Expression of Bruton’s agammaglobulinemia tyrosine kinase gene, BTK, is selectively down-regulated in T lymphocytes and plasma cells. J Immunol 1994; 152: 557–565.

    CAS  Google Scholar 

  48. de Weers M, Verschuren MC, Kraakman ME, Mensink RG, Schuurman RK, van Dongen JJ et al. The Bruton's tyrosine kinase gene is expressed throughout B cell differentiation, from early precursor B cell stages preceding immunoglobulin gene rearrangement up to mature B cell stages. Eur J Immunol 1993; 23: 3109–3114.

    Article  CAS  Google Scholar 

  49. Satterthwaite A, Witte O . Genetic analysis of tyrosine kinase function in B cell development. Annu Rev Immunol 1996; 14: 131–154.

    Article  CAS  Google Scholar 

  50. Nisitani S, Satterthwaite AB, Akashi K, Weissman IL, Witte ON, Wahl MI . Posttranscriptional regulation of Bruton’s tyrosine kinase expression in antigen receptor-stimulated splenic B cells. Proc Natl Acad Sci USA 2000; 97: 2737–2742.

    Article  CAS  Google Scholar 

  51. Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H et al. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002; 3: 889–901.

    Article  CAS  Google Scholar 

  52. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E et al. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004; 428: 758–763.

    Article  CAS  Google Scholar 

  53. Teti A, Marchisio PC, Zallone AZ . Clear zone in osteoclast function: role of podosomes in regulation of bone-resorbing activity. Am J Physiol 1991; 261: C1–C7.

    Article  CAS  Google Scholar 

  54. Tomomura M, Hasegawa H, Suda N, Sakagami H, Tomomura A . Serum calcium-decreasing factor, caldecrin, inhibits receptor activator of NF-kappaB ligand (RANKL)-mediated Ca2+ signaling and actin ring formation in mature osteoclasts via suppression of Src signaling pathway. J Biol Chem 2012; 287: 17963–17974.

    Article  CAS  Google Scholar 

  55. Mundy GR, Luben RA, Raisz LG, Oppenheim JJ, Buell DN . Bone-resorbing activity in supernatants from lymphoid cell lines. N Engl J Med 1974; 290: 867–871.

    Article  CAS  Google Scholar 

  56. Mundy GR, Raisz LG, Cooper RA, Schechter GP, Salmon SE . Evidence for the secretion of an osteoclast stimulating factor in myeloma. N Engl J Med 1974; 291: 1041–1046.

    Article  CAS  Google Scholar 

  57. Fowler JA, Edwards CM, Croucher PI . Tumor-host cell interactions in the bone disease of myeloma. Bone 2011; 48: 121–128.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Onyx Pharmaceuticals Inc (South San Francisco, CA, USA) and the Proteasome Research and Integrative Science for Multiple Myeloma—Onyx Novel Therapies Program (PRISM—NTP). NS Raje is a recipient of the Leukemia & Lymphoma Society clinical scholar Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N S Raje.

Ethics declarations

Competing interests

EE, JS and WFW are employees and shareholders in Celgene Avilomics Research. SA-K and CJK are employees of Onyx Pharmaceuticals Inc. NSR is on the advisory boards of Celgene, Novartis, Millennium, Onyx and Amgen. NSR has received research funding from AstraZeneca, Eli Lilly and Acetylon Pharmaceuticals.

Additional information

Author Contributions

HE designed the research, performed the experiments, collected, analyzed and interpreted the data, and wrote the manuscript. LS performed the experiments, collected and analyzed the data and helped with writing the manuscript. DDC, AJY, TAS, NN, YM and PRW performed the research and collected the data. SA-K, EE, JS, CJK and WFW provided compounds. NSR designed the research, provided the environment and support, and wrote the manuscript.

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eda, H., Santo, L., Cirstea, D. et al. A novel Bruton’s tyrosine kinase inhibitor CC-292 in combination with the proteasome inhibitor carfilzomib impacts the bone microenvironment in a multiple myeloma model with resultant antimyeloma activity. Leukemia 28, 1892–1901 (2014). https://doi.org/10.1038/leu.2014.69

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.69

This article is cited by

Search

Quick links