Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Myeloma

Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma

Subjects

Abstract

Pim-2 kinase is overexpressed in multiple myeloma (MM) cells to enhance their growth and survival, and regarded as a novel therapeutic target in MM. However, the impact of Pim-2 inhibition on bone disease in MM remains unknown. We demonstrated here that Pim-2 expression was also upregulated in bone marrow stromal cells and MC3T3-E1 preosteoblastic cells in the presence of cytokines known as the inhibitors of osteoblastogenesis in MM, including interleukin-3 (IL-3), IL-7, tumor necrosis factor-α, transforming growth factor-β (TGF-β) and activin A, as well as MM cell conditioned media. The enforced expression of Pim-2 abrogated in vitro osteoblastogenesis by BMP-2, which suggested Pim-2 as a negative regulator for osteoblastogenesis. Treatment with Pim-2 short-interference RNA as well as the Pim inhibitor SMI-16a successfully restored osteoblastogenesis suppressed by all the above inhibitory factors and MM cells. The SMI-16a treatment potentiated BMP-2-mediated anabolic signaling while suppressing TGF-β signaling. Furthermore, treatment with the newly synthesized thiazolidine-2,4-dione congener, 12a-OH, as well as its prototypic SMI-16a effectively prevented bone destruction while suppressing MM tumor growth in MM animal models. Thus, Pim-2 may have a pivotal role in tumor progression and bone loss in MM, and Pim-2 inhibition may become an important therapeutic strategy to target the MM cell–bone marrow interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T et al. Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 2004; 104: 2484–2491.

    Article  CAS  PubMed  Google Scholar 

  2. Abe M, Hiura K, Wilde J, Moriyama K, Hashimoto T, Ozaki S et al. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the development of osteolytic lesions in multiple myeloma. Blood 2002; 100: 2195–2202.

    CAS  PubMed  Google Scholar 

  3. Roodman GD . Pathogenesis of myeloma bone disease. Leukemia 2009; 23: 435–441.

    Article  CAS  PubMed  Google Scholar 

  4. Hiasa M, Abe M, Nakano A, Oda A, Amou H, Kido S et al. GM-CSF and IL-4 induce dendritic cell differentiation and disrupt osteoclastogenesis through M-CSF receptor shedding by up-regulation of TNF-alpha converting enzyme (TACE). Blood 2009; 114: 4517–4526.

    Article  CAS  PubMed  Google Scholar 

  5. Podar K, Chauhan D, Anderson KC . Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 2009; 23: 10–24.

    Article  CAS  PubMed  Google Scholar 

  6. Palumbo A, Anderson K . Multiple myeloma. N Engl J Med 2011; 364: 1046–1060.

    Article  CAS  PubMed  Google Scholar 

  7. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC . Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 2007; 7: 585–598.

    Article  CAS  PubMed  Google Scholar 

  8. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK et al. Improved survival in multiple myeloma and the impact of novel therapies. Blood 2008; 111: 2516–2520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lentzsch S, O'Sullivan A, Kennedy RC, Abbas M, Dai L, Pregja SL et al. Combination of bendamustine, lenalidomide, and dexamethasone (BLD) in patients with relapsed or refractory multiple myeloma is feasible and highly effective: results of phase 1/2 open-label, dose escalation study. Blood 2012; 119: 4608–4613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Edwards CM, Edwards JR, Lwin ST, Esparza J, Oyajobi BO, McCluskey B et al. Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood 2008; 111: 2833–2842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asano J, Nakano A, Oda A, Amou H, Hiasa M, Takeuchi K et al. The serine/threonine kinase Pim-2 is a novel anti-apoptotic mediator in myeloma cells. Leukemia 2011; 25: 1182–1188.

    Article  CAS  PubMed  Google Scholar 

  12. Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E et al. Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 2005; 106: 3160–3165.

    Article  CAS  PubMed  Google Scholar 

  13. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 2003; 349: 2483–2494.

    Article  CAS  PubMed  Google Scholar 

  14. Fowler JA, Mundy GR, Lwin ST, Edwards CM . Bone marrow stromal cells create a permissive microenvironment for myeloma development: a new stromal role for Wnt inhibitor Dkk1. Cancer Res 2012; 72: 2183–2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr . Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 2007; 109: 2106–2111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ehrlich LA, Chung HY, Ghobrial I, Choi SJ, Morandi F, Colla S et al. IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 2005; 106: 1407–1414.

    Article  CAS  PubMed  Google Scholar 

  17. D'Souza S, del Prete D, Jin S, Sun Q, Huston AJ, Kostov FE et al. Gfi1 expressed in bone marrow stromal cells is a novel osteoblast suppressor in patients with multiple myeloma bone disease. Blood 2011; 118: 6871–6880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giuliani N, Colla S, Morandi F, Lazzaretti M, Sala R, Bonomini S et al. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 2005; 106: 2472–2483.

    Article  CAS  PubMed  Google Scholar 

  19. Li B, Shi M, Li J, Zhang H, Chen B, Chen L et al. Elevated tumor necrosis factor-alpha suppresses TAZ expression and impairs osteogenic potential of Flk-1+ mesenchymal stem cells in patients with multiple myeloma. Stem Cells Dev 2007; 16: 921–930.

    Article  CAS  PubMed  Google Scholar 

  20. Takeuchi K, Abe M, Hiasa M, Oda A, Amou H, Kido S et al. Tgf-Beta inhibition restores terminal osteoblast differentiation to suppress myeloma growth. PLoS One 2010; 5: e9870.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Vallet S, Mukherjee S, Vaghela N, Hideshima T, Fulciniti M, Pozzi S et al. Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci USA 2010; 107: 5124–5129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chantry AD, Heath D, Mulivor AW, Pearsall S, Baud'huin M, Coulton L et al. Inhibiting activin-A signaling stimulates bone formation and prevents cancer-induced bone destruction in vivo. J Bone Miner Res 2010; 25: 2633–2646.

    Article  PubMed  Google Scholar 

  23. Mori KJ, Fujitake H, Ohkubo H, Ito Y, Dexter TM . Development of stromal cell colonies in bone marrow cell culture. Gann 1978; 69: 689–693.

    CAS  PubMed  Google Scholar 

  24. Yata K, Yaccoby S . The SCID-rab model: a novel in vivo system for primary human myeloma demonstrating growth of CD138-expressing malignant cells. Leukemia 2004; 18: 1891–1897.

    Article  CAS  PubMed  Google Scholar 

  25. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001; 107: 513–523.

    Article  CAS  PubMed  Google Scholar 

  26. Kato M, Patel MS, Levasseur R, Lobov I, Chang BH, Glass DA 2nd et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J Cell Biol 2002; 157: 303–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chang J, Wang Z, Tang E, Fan Z, McCauley L, Franceschi R et al. Inhibition of osteoblastic bone formation by nuclear factor-kappaB. Nat Med 2009; 15: 682–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kaneki H, Guo R, Chen D, Yao Z, Schwarz EM, Zhang YE et al. Tumor necrosis factor promotes Runx2 degradation through up-regulation of Smurf1 and Smurf2 in osteoblasts. J Biol Chem 2006; 281: 4326–4333.

    Article  CAS  PubMed  Google Scholar 

  29. Hosen N, Matsuoka Y, Kishida S, Nakata J, Mizutani Y, Hasegawa K et al. CD138-negative clonogenic cells are plasma cells but not B cells in some multiple myeloma patients. Leukemia 2012; 26: 2135–2141.

    Article  CAS  PubMed  Google Scholar 

  30. Kyle RA, Yee GC, Somerfield MR, Flynn PJ, Halabi S, Jagannath S et al. American Society of Clinical Oncology 2007 clinical practice guideline update on the role of bisphosphonates in multiple myeloma. J Clin Oncol 2007; 25: 2464–2472.

    Article  CAS  PubMed  Google Scholar 

  31. Coleman RE . Bisphosphonates: clinical experience. Oncologist 2004; 9 (Suppl 4): 14–27.

    Article  CAS  PubMed  Google Scholar 

  32. Morgan GJ, Davies FE, Gregory WM, Cocks K, Bell SE, Szubert AJ et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC Myeloma IX): a randomised controlled trial. Lancet 2010; 376: 1989–1999.

    Article  CAS  PubMed  Google Scholar 

  33. Wu P, Walker BA, Brewer D, Gregory WM, Ashcroft J, Ross FM et al. A gene expression-based predictor for myeloma patients at high risk of developing bone disease on bisphosphonate treatment. Clin Cancer Res 2011; 17: 6347–6355.

    Article  CAS  PubMed  Google Scholar 

  34. Weinstein RS, Roberson PK, Manolagas SC . Giant osteoclast formation and long-term oral bisphosphonate therapy. N Engl J Med 2009; 360: 53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jain N, Weinstein RS . Giant osteoclasts after long-term bisphosphonate therapy: diagnostic challenges. Nat Rev Rheumatol 2009; 5: 341–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 2001; 344: 1434–1441.

    Article  CAS  PubMed  Google Scholar 

  37. Black DM, Greenspan SL, Ensrud KE, Palermo L, McGowan JA, Lang TF et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 2003; 349: 1207–1215.

    Article  CAS  PubMed  Google Scholar 

  38. Tashjian AH Jr, Gagel RF . Teriparatide [human PTH(1–34)]: 2.5 years of experience on the use and safety of the drug for the treatment of osteoporosis. J Bone Miner Res 2006; 21: 354–365.

    Article  CAS  PubMed  Google Scholar 

  39. Pozzi S, Fulciniti M, Yan H, Vallet S, Eda H, Patel K et al. In vivo and in vitro effects of a novel anti-Dkk1 neutralizing antibody in multiple myeloma. Bone 2013; 53: 487–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA et al. Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 2009; 114: 371–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Subbiah V, Madsen VS, Raymond AK, Benjamin RS, Ludwig JA . Of mice and men: divergent risks of teriparatide-induced osteosarcoma. Osteoporos Int 2010; 21: 1041–1045.

    Article  CAS  PubMed  Google Scholar 

  42. DiMeo TA, Anderson K, Phadke P, Fan C, Perou CM, Naber S et al. A novel lung metastasis signature links Wnt signaling with cancer cell self-renewal and epithelial-mesenchymal transition in basal-like breast cancer. Cancer Res 2009; 69: 5364–5373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mitra A, Menezes ME, Shevde LA, Samant RS . DNAJB6 induces degradation of beta-catenin and causes partial reversal of mesenchymal phenotype. J Biol Chem 2010; 285: 24686–24694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cowling VH, D'Cruz CM, Chodosh LA, Cole MD . c-Myc transforms human mammary epithelial cells through repression of the Wnt inhibitors DKK1 and SFRP1. Mol Cell Biol 2007; 27: 5135–5146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Garrett IR, Chen D, Gutierrez G, Zhao M, Escobedo A, Rossini G et al. Selective inhibitors of the osteoblast proteasome stimulate bone formation in vivo and in vitro. J Clin Invest 2003; 111: 1771–1782.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hideshima T, Richardson P, Chauhan D, Palombella VJ, Elliott PJ, Adams J et al. The proteasome inhibitor PS-341 inhibits growth, induces apoptosis, and overcomes drug resistance in human multiple myeloma cells. Cancer Res 2001; 61: 3071–3076.

    CAS  PubMed  Google Scholar 

  47. Mitsiades N, Mitsiades CS, Poulaki V, Chauhan D, Fanourakis G, Gu X et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci USA 2002; 99: 14374–14379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N et al. Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 2002; 62: 4996–5000.

    CAS  PubMed  Google Scholar 

  49. Ozaki S, Tanaka O, Fujii S, Shigekiyo Y, Miki H, Choraku M et al. Therapy with bortezomib plus dexamethasone induces osteoblast activation in responsive patients with multiple myeloma. Int J Hematol 2007; 86: 180–185.

    Article  CAS  PubMed  Google Scholar 

  50. Zangari M, Esseltine D, Lee CK, Barlogie B, Elice F, Burns MJ et al. Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 2005; 131: 71–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a Grants-in-aid for Scientific Research (C) (23591390) from the Ministry of Education, Science, Sport, and Culture of Japan, a National Cancer Center Research and Development Fund (21-8-5) from the Ministry of Health, Labor and Welfare of Japan, and A-STEP from Japan Science and Technology Agency (AS242Z02068Q) to MA, and a Japan Leukemia Research Fund, IMF Japan Aki Horinouchi Research Grant, and a Grant-in-Aid for Scientific Research (21792077, 23659946 and 25463087) from the Ministry of Education, Science, Sport and Culture of Japan to MH. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Abe.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hiasa, M., Teramachi, J., Oda, A. et al. Pim-2 kinase is an important target of treatment for tumor progression and bone loss in myeloma. Leukemia 29, 207–217 (2015). https://doi.org/10.1038/leu.2014.147

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2014.147

This article is cited by

Search

Quick links