Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product

Abstract

About 30% of human tumours contain a mutation in one of the three ras genes leading to the production of p21ras oncoproteins that are thought to make a major contribution to the transformed phenotype of the tumour1,2. The biochemical mode of action of the ras proteins is unknown but as they bind GTP and GDP and have an intrinsic GTPase activity, they may function like regulatory G proteins3–7 and control cell proliferation by regulating signal transduction pathways at the plasma membrane8–10. It is assumed that an external signal is detected by a membrane molecule (or detector) that stimulates the conversion of p21.GDP to p21.GTP which then interacts with a target molecule (or effector) to generate an internal signal. Recently a cytoplasmic protein, GAP, has been identified that interacts with the ras proteins, dramatically increasing the GTPase activity of normal p21 but not of the oncoproteins11. We report here that GAP appears to interact with p21ras at a site previously identified as the 'effector' site12,13, strongly implicating GAP as the biological target for regulation by p21.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Barbacid, M. A. Rev. Biochem. 56, 779–827 (1986).

    Article  Google Scholar 

  2. Paterson, H. et al. Cell 51, 803–812 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. McGrath, J. P., Capon, D. J., Goeddel, D. V. & Levinson, A. D. Nature 319, 644–649 (1984).

    Article  ADS  Google Scholar 

  4. Trahey, M. et al. Molec. cell. Biol. 7, 541–544 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hall, A. & Self, A. J. biol. Chem. 261, 10963–10965 (1986).

    CAS  PubMed  Google Scholar 

  6. Sweet, R. W. et al. Nature 311, 273–275 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Hurley, J. B., Simon, M. I., Teplow, D. B., Robishaw, J. D. & Gilman, A. G. Science 226, 860–862 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Mulcahy, L. S., Smith, M. P. & Stacey, D. W. Nature 313, 241–243 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wakelam, M. J. O. et al. Nature 323, 173–176 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Lacal, J. C. et al. Science 238, 533–535 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Trahey, M. & McCormick, F. Science 238, 542–545 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Sigal, I. S., Gibbs, J. B., D'Alonzo, J. S. & Scolnick, E. M. Proc. natn. Acad. Sci. U.S.A. 83, 4725–4729 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Willumsen, B. M. et al. Molec. cell. Biol 6, 2646–2654 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McCormick, F. et al. Science 280, 78–82 (1985).

    Article  ADS  Google Scholar 

  15. Kaziro, Y. Biochim. biophys. Ada 505, 95–127 (1978).

    Article  CAS  Google Scholar 

  16. Buss, J. E. & Sefton, B. M. Molec. cell. Biol. 6, 116–122 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muller, J. & Germain, R. J. exp. Med. 164, 1478–1489 (1986).

    Article  Google Scholar 

  18. Gross, M. et al. Molec. cell. Biol. 5, 1015–1024 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lowe, D. G. & Goeddel, D. V. Molec. cell. Biol. 7, 2845–2856 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lowry, O. H., Rosebrough, N. J., Fair, A. L. & Randall, R. J. J. biol. Chem. 193, 265–275 (1950).

    Google Scholar 

  21. Furth, M. E., Davis, L. J., Fleurdelys, B. & Scolnick, E. M. J. Virol. 43, 294–304 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Marshall, C. J., Hall, A. & Weiss, R. A. Nature 299, 171–173 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calés, C., Hancock, J., Marshall, C. et al. The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature 332, 548–551 (1988). https://doi.org/10.1038/332548a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332548a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing