Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural adjuvants: Endogenous activators of dendritic cells

Abstract

Dendritic cells, the most potent antigen-presenting cells, need to be activated before they can function to initiate an immune response. We report here that, in the absence of any foreign substances, dendritic cells can be activated by endogenous signals received from cells that are stressed, virally infected or killed necrotically, but not by healthy cells or those dying apoptotically. Injected in vivo with an antigen, the endogenous activating substances can function as natural adjuvants to stimulate a primary immune response, and they may represent the natural initiators of transplant rejection, spontaneous tumor rejection, and some forms of autoimmunity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resting dendritic cells can be activated by mechanical manipulation in the absence of foreign substances.
Figure 2: Resting dendritic cells can be activated by co-culture with necrotic syngeneic cells.
Figure 3: Resting dendritic cells are able to engulf necrotic as well as apoptotic fibroblasts.
Figure 4: Functional activation of dendritic cells.
Figure 5: IFN-α activates dendritic cells.
Figure 6: Priming naive T cells.

Similar content being viewed by others

References

  1. Steinman, R. The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9, 271–296 (1991).

    Article  CAS  Google Scholar 

  2. Cella, M., Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr. Opin. Immunol. 9, 10–16 (1997).

    Article  CAS  Google Scholar 

  3. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245– 252 (1998).

    Article  CAS  Google Scholar 

  4. Pierre, P. et al. Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388, 787– 792 (1997).

    Article  CAS  Google Scholar 

  5. Janeway, C.J. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb. Symp. Quant. Biol. 54, 1– 13 (1989).

    Article  CAS  Google Scholar 

  6. Medzhitov, R. & Janeway, C.A. Jr. Innate immunity: the virtues of a nonclonal system of recognition. Cell 91, 295–298 (1997).

    Article  CAS  Google Scholar 

  7. Roake, J. et al. Dendritic cell loss from nonlymphoid tissues after systemic administration of lipopolysaccharide, tumor necrosis factor, and interleukin 1. J. Exp. Med. 181, 2237–2247 (1995).

    Article  CAS  Google Scholar 

  8. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182 , 389–400 (1995).

    Article  CAS  Google Scholar 

  9. Slupsky, P. et al. Activated platelets induce tissue factor expression on human umbelical vein endothelial cells by ligation of CD40. Thromb. Haemost. 80, 1008–1014 ( 1998).

    Article  CAS  Google Scholar 

  10. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 ( 1994).

    Article  CAS  Google Scholar 

  11. Matzinger, P. An innate sense of danger. Semin. Immunol. 10, 399–415 (1998).

    Article  CAS  Google Scholar 

  12. Sallusto, F. & Lanzavecchia. A. Efficient presentation of soluble antigen by cultured human dendritic is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 179, 1109– 1118 (1994).

    Article  CAS  Google Scholar 

  13. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow culture supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693– 1702 (1992).

    Article  CAS  Google Scholar 

  14. Inaba, K. et al. The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro . J. Exp. Med. 180, 1849– 1860 (1994).

    Article  CAS  Google Scholar 

  15. Yahraus, T., Chandra, S., Legendre, L. & Low, P.S. Evidence for a mechanically induced oxidative burst. Plant Physiol. 109, 1259–1266 ( 1995).

    Article  CAS  Google Scholar 

  16. Voll, R. et al. Immunosuppressive effects of apoptotic cells. Nature 390, 350–351 ( 1997).

    Article  CAS  Google Scholar 

  17. Fadok, V. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J. Clin. Invest. 101, 890–898 (1998).

    Article  CAS  Google Scholar 

  18. Rubartelli, A., Poggi, A. & Zocchi, M.R. The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium. Eur. J. Immunol. 27, 1893–1900 (1997).

    Article  CAS  Google Scholar 

  19. Albert, M., Sauter, B. & Bhardwaj, N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 392, 86–89 (1998).

    Article  CAS  Google Scholar 

  20. Inaba, K. et al. Efficient presentation of phagocytosed cellular fragments on the major histocompatibility complex class II products of dendritic cells. J. Exp. Med. 188, 2163– 2173 (1998).

    Article  CAS  Google Scholar 

  21. Kurts, C. et al. Constitutive class I-restricted exogenous presentation of self antigens in vivo. J. Exp. Med. 184, 923–930 (1996).

    Article  CAS  Google Scholar 

  22. Germain, R. & Margulies, D.H. The biochemistry and cell biology of antigen processing and presentation. Annu. Rev. Immunol. 11, 403–450 (1993).

    Article  CAS  Google Scholar 

  23. Bradley, J. Indirect T cell recognition in allograft rejection. Int. Rev. Immunol. 13, 245–255 ( 1996).

    Article  CAS  Google Scholar 

  24. Sen, G. & Lengye, l.P. The interferon system. A bird's eye view of its biochemistry. J. Biol. Chem. 267, 5017–5020 (1992).

    CAS  PubMed  Google Scholar 

  25. Pfeffer, L. et al. Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res. 58, 2489–2499 (1998).

    CAS  PubMed  Google Scholar 

  26. Swensson, H., Johannisson, A., Nikkila, T., Alm, G.V. & Cederblad, B. The cell surface phenotype of human interferon-alpha producing cells as determined by flow cytometry. Scand. J. Immunol. 44, 164–172 (1996).

    Article  Google Scholar 

  27. Chakrabarti, D. Hultgren, B. & Stewart, T.A. IFN-alpha induces autoimmune T cells through the induction of intracellular adhesion molecule-1 and B7.2. J. Immunol. 157, 522–528 (1996).

    CAS  PubMed  Google Scholar 

  28. Luft, T. et al. Type I IFNs enhance the terminal differentiation of dendritic cells. J. Immunol. 161, 1947– 1953 (1998).

    CAS  PubMed  Google Scholar 

  29. Gresser, I., Tovey, M.G., Bandu, M.E., Maury, C. & Brouty-Boye, D. Role of interferon in the pathogenesis of virus diseases in mice as demonstrated by the use of anti-interferon serum. I. Rapid evolution of encephalomyocarditis virus infection. J. Exp. Med. 144, 1305–1315 (1976).

    Article  CAS  Google Scholar 

  30. Lassila, O., Vainio, O. & Matzinger, P. Can B cells turn on virgin T cells? Nature 334, 253–255 ( 1988).

    Article  CAS  Google Scholar 

  31. Ochsenbein, A.F. et al. Immune surveillance against a solid tumor fails because of immunological ignorance. Proc Natl. Acad. Sci. USA 96, 2233–2238 (1999).

    Article  CAS  Google Scholar 

  32. Ronchetti, A. et al. Immunogenicity of apoptotic cells in vivo: role of antigen load, antigen-presenting cells, and cytokines. J. Immunol. 163, 130–136 ( 1999).

    CAS  PubMed  Google Scholar 

  33. Harding, C., Heuser, J. & Stahl, P. Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur. J. Cell Biol. 35, 256–263 (1984).

    CAS  Google Scholar 

  34. Bartoccioni, E. et al. MHC class I, MHC class II and intercellular adhesion molecule-1 (ICAM-1) expression in inflammatory myopathies. Clin. Exp. Immunol. 95, 166–172 ( 1994).

    Article  CAS  Google Scholar 

  35. Mackay, C., Marston, W.L. & Dudler, L. Naive and memory T cells show distinct pathways of lymphocyte recirculation. J. Exp. Med. 171, 801– 817 (1990).

    Article  CAS  Google Scholar 

  36. Tamura, Y., Peng, P., Liu, K., Daou, M. & Srivastava, P.K. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 278, 117–120 (1997).

    Article  CAS  Google Scholar 

  37. Ip, Y. et al. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75, 753– 763 (1993).

    Article  CAS  Google Scholar 

  38. Lemaitre, B., Reichhart, J.M. & Hoffmann, J.A. Drosophila host defense: differential induction of antimicrobial peptide genes after infection by various classes of microorganisms. Proc. Natl. Acad. Sci. USA 94, 14614– 14619 (1997).

    Article  CAS  Google Scholar 

  39. Delledonne, M., Xia, Y., Dixon, R.A. & Lamb, C. Nitric oxide functions as a signal in plant disease resistance. Nature 394 , 585–588 (1998).

    Article  CAS  Google Scholar 

  40. Cole, W. Efforts to explain spontaneous regression of cancer. J. Surg. Oncol. 17, 201–209 ( 1981).

    Article  CAS  Google Scholar 

  41. Land, W. et al. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation 57 (1994).

  42. Coley, W. The treatment of inoperable sarcoma with the mixed toxins of erysipelas and bacillus prodigiosus. JAMA 20, 389– 395 (1898).

  43. Devitt, A. et al. Human CD14 mediates recognition and phagocytosis of apoptotic cells. Nature 392, 505– 509 (1998).

    Article  CAS  Google Scholar 

  44. Yang, R. et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395, 284– 288 (1998).

    Article  CAS  Google Scholar 

  45. Aliprantis, A. et al. Cell Activation and apoptosis by bacterial lipoproteins yhrough Toll-like receptor-2. Science 285, 736– 739 (1999).

    Article  CAS  Google Scholar 

  46. Cohen, O., Kinter, A. & Fauci, A.S. Host factors in the pathogenesis of HIV disease. Immunol. Rev. 159, 31–48 (1997).

    Article  CAS  Google Scholar 

  47. Fingeroth, J. et al. Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proc. Natl. Acad. Sci. USA 81, 4510–4514 (1984).

    Article  CAS  Google Scholar 

  48. White, J. et al. The V beta-specific superantigen staphylococcal enterotoxin B: stimulation of mature T cells and clonal deletion in neonatal mice. Cell 56, 27–35 ( 1989).

    Article  CAS  Google Scholar 

  49. Joiner, K., Brown E.J. & Frank, M.M. Complement and bacteria: chemistry and biology in host defense. Annu. Rev. Immunol. 2, 461– 491 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Bendelac, L. D'Adamio, R.N. Germain and R.H. Schwartz for critically reading the manuscript, H. Arnheiter for an initial gift of IFN-α and advice, R. Caricchio for suggestions, O. Alpan for reading 'blind' the delayed-type hypersensitivity results, and members of the Ghost Lab (O. Alpan, C. Anderson, L. Bonney, S. Celli, A. Frank, B. Massey, J.P. Ridge, T. Kamala) and the Laboratory for Cellular and Molecular Immunology for the supportive environment. S.G. was partially supported by a fellowship from Universita' Cattolica del Sacro Cuore (Rome, Italy); and M.L., by a fellowship from the Dutch Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Gallucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: Endogenous activators of dendritic cells. Nat Med 5, 1249–1255 (1999). https://doi.org/10.1038/15200

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15200

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing