Skip to main content

Advertisement

Log in

Renal toxicity of anticancer agents targeting HER2 and EGFR

  • Review
  • Published:
Journal of Nephrology Aims and scope Submit manuscript

Abstract

EGFR and HER2 are found overexpressed and/or activated in many different human malignancies (e.g. breast and colon cancer), and a number of drugs specifically targeting these two tyrosine kinases have been developed over the years as anticancer agents. In the present review, the renal safety profile of presently available agents targeting either HER2 or EGFR will be discussed, together with the peculiarities related to their clinical use in patients with impaired renal function, or even in dialysis. Indeed, even though renal toxicity is not so common with these agents, it may nevertheless happen, especially when these agents are combined with traditional chemotherapeutic agents. As a whole, kidney impairment or dialysis should not be regarded per se as reasons not to administer or to stop an active anti-HER or anti-EGFR anticancer treatment, especially given the possibility of significantly improving the life expectancy of many cancer patients with the use of these agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Coussens L, Yang-Feng T, Liao Y et al (1985) Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 230:1132–1139

    Article  CAS  PubMed  Google Scholar 

  2. Olayioye M (2001) Update on HER-2 as a target for cancer therapy: intracellular signaling pathways of ErbB2/HER-2 and family members. Breast Cancer Res 3:385–389

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Mitri Z, Constantine T, O’Regan R (2012) The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemother Res Pract 2012:743193

    PubMed Central  PubMed  Google Scholar 

  4. Burstein H (2005) The distinctive nature of HER2-positive breast cancers. N Engl J Med 353:1652–1654

    Article  CAS  PubMed  Google Scholar 

  5. Roy V, Perez E (2009) Beyond trastuzumab: small molecule tyrosine kinase inhibitors in HER-2-positive breast cancer. Oncologist 14:1061–1069

    Article  CAS  PubMed  Google Scholar 

  6. Carlomagno C, Perrone F, Gallo C et al (1996) C-erb B2 overexpression decreases the benefit of adjuvant tamoxifen in early-stage breast cancer without axillary lymph node metastases. J Clin Oncol 14:2702–2708

    CAS  PubMed  Google Scholar 

  7. Pietras RJ, Arboleda J, Reese DM et al (1995) HER-2 tyrosine kinase pathway targets estrogen receptor and promotes hormone-independent growth in human breast cancer cells. Oncogene 10:2435–2446

    CAS  PubMed  Google Scholar 

  8. Pritchard KI, Shepherd LE, O’Malley FP et al (2006) HER2 and responsiveness of breast cancer to adjuvant chemotherapy. N Engl J Med 354:2103–2111

    Article  CAS  PubMed  Google Scholar 

  9. Tetu B, Brisson J (1994) Prognostic significance of HER-2/neu oncoprotein expression in node-positive breast cancer: the influence of the pattern of immunostaining and adjuvant therapy. Cancer 73:2359–2365

    Article  CAS  PubMed  Google Scholar 

  10. Tiwari RK, Borgen PI, Wong GY et al (1992) HER-2/neu amplification and overexpression in primary human breast cancer is associated with early metastasis. Anticancer Res 12:419–425

    CAS  PubMed  Google Scholar 

  11. Babar T, Blomberg C, Hoffner E, Yan X (2014) Anti-HER2 cancer therapy and cardiotoxicity. Curr Pharm Des 20:4911–4919

    Article  CAS  PubMed  Google Scholar 

  12. Raj S, Franco VI, Lipshultz SE (2014) Anthracycline-induced cardiotoxicity: a review of pathophysiology, diagnosis, and treatment. Curr Treat Options Cardiovasc Med 16:315

    Article  PubMed  Google Scholar 

  13. Goldenberg MM (1999) Trastuzumab, a recombinant DNA-derived humanized monoclonal antibody, a novel agent for the treatment of metastatic breast cancer. Clin Ther 21:309–318

    Article  CAS  PubMed  Google Scholar 

  14. Slamon D, Eiermann W, Robert N et al (2011) Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med 365:1273–1283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Gianni L, Eiermann W, Semiglazov V et al (2010) Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 375:377–384

    Article  CAS  PubMed  Google Scholar 

  16. Marty M, Cognetti F, Maraninchi D et al (2005) Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: the M77001 study group. J Clin Oncol 23:4265–4274

    Article  CAS  PubMed  Google Scholar 

  17. Kaufman B, Mackey JR, Clemens MR et al (2009) Trastuzumab plus anastrozole versus anastrozole alone for the treatment of postmenopausal women with human epidermal growth factor receptor 2-positive, hormone receptor-positive metastatic breast cancer: results from the randomized phase III TAnDEM study. J Clin Oncol 27:5529–5537

    Article  CAS  PubMed  Google Scholar 

  18. Bang YJ, Van Cutsem E, Feyereislova A et al (2010) Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet 376:687–697

    Article  CAS  PubMed  Google Scholar 

  19. Harbeck N, Beckmann MW, Rody A et al (2013) HER2 Dimerization inhibitor Pertuzumab—mode of action and clinical data in breast cancer. Breast Care (Basel) 8:49–55

    Article  Google Scholar 

  20. Gianni L, Pienkowski T, Im YH et al (2012) Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial. Lancet Oncol 13:25–32

    Article  CAS  PubMed  Google Scholar 

  21. Baselga J, Cortés J, Kim SB et al (2012) Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N Engl J Med 366:109–119

    Article  CAS  PubMed  Google Scholar 

  22. Burris HA 3rd (2004) Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist 9(Suppl. 3):10–15

    Article  CAS  PubMed  Google Scholar 

  23. Geyer CE, Forster J, Lindquist D et al (2006) Lapatinib plus capecitabine for HER2-positive advanced breast cancer. N Engl J Med 355:2733–2743

    Article  CAS  PubMed  Google Scholar 

  24. Johnston S, Pippen J Jr, Pivot X et al (2009) Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol 27:5538–5546

    Article  CAS  PubMed  Google Scholar 

  25. Blackwell KL, Burstein HJ, Storniolo AM et al (2010) Randomized study of Lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer. J Clin Oncol 28:1124–1130

    Article  CAS  PubMed  Google Scholar 

  26. Boyraz B, Sendur MA, Aksoy S et al (2013) Trastuzumab emtansine (T-DM1) for HER2-positive breast cancer. Curr Med Res Opin 29:405–14

  27. Verma S, Miles D, Gianni L et al (2012) Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med 367:1783–1791

    Article  CAS  PubMed  Google Scholar 

  28. Lu D, Girish S, Gao Y et al (2014) Population pharmacokinetics of trastuzumab emtansine (T-DM1), a HER2-targeted antibody-drug conjugate, in patients with HER2-positive metastatic breast cancer: clinical implications of the effect of covariates. Cancer Chemother Pharmacol 74:399–410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Russo G, Cioffi G, Di Lenarda A et al (2012) Role of renal function on the development of cardiotoxicity associated with trastuzumab-based adjuvant chemotherapy for early breast cancer. Intern Emerg Med 7:439–446

    Article  PubMed  Google Scholar 

  30. Micallef RA, Barrett-Lee PJ, Donovan K, Ashraf M, Williams L (2007) Trastuzumab in patients on haemodialysis for renal failure. Clin Oncol (R Coll Radiol) 19:559

    Article  CAS  Google Scholar 

  31. Piacentini F, Omarini C, Barbieri E (2013) Lapatinib and renal impairment: a case report. Tumori 99:e134–e135

    PubMed  Google Scholar 

  32. Costa Reis AP, Russo P, Gallucci S, Sullivan KE (2014) A150: control of cell proliferation in Lupus Nephritis: the tole of miRNAs and HER2. Arthritis Rheumatol 66(Suppl. 11):S194

    Article  Google Scholar 

  33. Yarden Y, Schlessinger J (1987) Epidermal Growth-Factor induces rapid, reversible aggregation of the purified Epidermal Growth-Factor Receptor. Biochemistry 26:1443–1451

    Article  CAS  PubMed  Google Scholar 

  34. Oda K, Matsuoka Y, Funahashi A, Kitano H (2005) A comprehensive pathway map of epidermal growth factor receptor signaling. Mol Syst Biol 1(2005):0010

    PubMed  Google Scholar 

  35. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  36. Rosell R, Moran T, Queralt C et al (2009) Screening for epidermal growth factor receptor mutations in lung cancer. N Engl J Med 361:958–967

    Article  CAS  PubMed  Google Scholar 

  37. Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361:947–957

    Article  CAS  PubMed  Google Scholar 

  38. Kim ES, Hirsh V, Mok T et al (2008) Gefitinib versus docetaxel in previously treated non-small-cell lung cancer (INTEREST): a randomized phase III trial. Lancet 372:1809–1818

    Article  CAS  PubMed  Google Scholar 

  39. Zhou C, Wu YL, Chen G et al (2011) Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): a multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12:735–742

    Article  CAS  PubMed  Google Scholar 

  40. Cappuzzo F, Ciuleanu T, Stelmakh L et al (2010) Erlotinib as maintenance treatment in advanced non-small-cell lung cancer: a multicentre, randomised, placebo-controlled phase 3 study. Lancet Oncol 11:521–529

    Article  CAS  PubMed  Google Scholar 

  41. Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al (2005) Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med 353:123–132

    Article  CAS  PubMed  Google Scholar 

  42. Moore MJ, Goldstein D, Hamm J et al (2007) Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 25:1960–1966

    Article  CAS  PubMed  Google Scholar 

  43. Sequist LV, Yang JC, Yamamoto N et al (2013) Phase III study of afatinib or cisplatin plus pemetrexed in patients with metastatic lung adenocarcinoma with EGFR mutations. J Clin Oncol 31:3327–3334

    Article  CAS  PubMed  Google Scholar 

  44. Ciardiello F, Tortora G (2002) Anti-epidermal growth factor receptor drugs in cancer therapy. Expert Opin Investig Drugs 11:755–768

    Article  CAS  PubMed  Google Scholar 

  45. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351:337–345

    Article  CAS  PubMed  Google Scholar 

  46. Jonker DJ, O’Callaghan CJ, Karapetis CS et al (2007) Cetuximab for the treatment of colorectal cancer. N Engl J Med 357:2040–2048

    Article  CAS  PubMed  Google Scholar 

  47. Sobrero A, Maurel J, Fehrenbacher L et al (2008) EPIC: phase III trial of cetuximab plus irinotecan after fluoropyrimidine and oxaliplatin failure in patients with metastatic colorectal cancer. J Clin Oncol 26:2311–2319

    Article  CAS  PubMed  Google Scholar 

  48. Van Cutsem E, Köhne CH, Hitre E et al (2009) Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med 360:1408–1417

    Article  PubMed  Google Scholar 

  49. Vermorken JB, Mesia R, Rivera F et al (2008) Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med 359:1116–1127

    Article  CAS  PubMed  Google Scholar 

  50. Bonner JA, Harari PM, Giralt J et al (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354:567–580

    Article  CAS  PubMed  Google Scholar 

  51. Douillard JY, Siena S, Cassidy J et al (2010) Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 28:4697–4705

    Article  CAS  PubMed  Google Scholar 

  52. Peeters M, Price TJ, Cervantes A et al (2010) Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 28:4706–4713

    Article  CAS  PubMed  Google Scholar 

  53. Van Cutsem E, Peeters M, Siena S et al (2007) Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol 25:1658–1664

    Article  PubMed  Google Scholar 

  54. Voets T, Nilius B, Hoefs S et al (2004) TRPM6 forms the Mg2 + influx channel involved in intestinal and renal Mg2+ absorption. J Biol Chem 279:19–25

    Article  CAS  PubMed  Google Scholar 

  55. Groenestege WM, Thébault S, van der Wijst J et al (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 117:2260–2267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Fakih MG, Wilding G, Lombardo J (2006) Cetuximab-induced hypomagnesemia in patients with colorectal cancer. Clin Colorectal Cancer 6:152–156

    Article  CAS  PubMed  Google Scholar 

  57. Tejpar S, Piessevaux H, Claes K et al (2007) Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol 8:387–394

    Article  CAS  PubMed  Google Scholar 

  58. Schrag D, Chung KY, Flombaum C, Saltz L (2005) Cetuximab therapy and symptomatic hypomagnesemia. J Natl Cancer Inst 97:1221–1224

    Article  CAS  PubMed  Google Scholar 

  59. Izzedine H, Bahleda R, Khayat D et al (2010) Electrolyte disorders related to EGFR-targeting drugs. Crit Rev Oncol Hematol 73:213–219

    Article  PubMed  Google Scholar 

  60. Fakih MG (2008) Management of Anti-EGFR–targeting monoclonal antibody-induced hypomagnesemia. Oncology 22:74–76

    PubMed  Google Scholar 

  61. Maliakal P, Ledford A (2010) Electrolyte and protein imbalance following anti-EGFR therapy in cancer patients: a comparative study. Exp Ther Med 1:307–311

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Dimke H, van der Wijst J, Alexander TR et al (2010) Effects of the EGFR inhibitor erlotinib on magnesium handling. J Am Soc Nephrol 21:1309–1316

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Costa A, Tejpar S, Prenen H, Van Cutsem E (2011) Hypomagnesaemia and targeted anti-epidermal growth factor receptor (EGFR) agents Targ. Oncology 6:227–233

    Google Scholar 

  64. Chen P, Wang L, Li H, Liu B, Zou Z (2013) Incidence and risk of hypomagnesemia in advanced cancer patients treated with cetuximab: a meta-analysis. Oncol Lett 5:1915–1920

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Cao Y, Liao C, Tan A, Liu L, Gao F (2010) Meta-analysis of incidence and risk of hypomagnesemia with cetuximab for advanced cancer. Chemotherapy 56:459–465

    Article  CAS  PubMed  Google Scholar 

  66. Petrelli F, Borgonovo K, Cabiddu M, Ghilardi M, Barni S (2012) Risk of anti-EGFR monoclonal antibody-related hypomagnesemia: systematic review and pooled analysis of randomized studies. Expert Opin Drug Saf 11(Suppl. 1):S9–S19

    Article  CAS  PubMed  Google Scholar 

  67. Cao Y, Liu L, Liao C, Tan A, Gao F (2010) Meta-analysis of incidence and risk of hypokalemia with cetuximab-based therapy for advanced cancer. Cancer Chemother Pharmacol 66:37–42

    Article  CAS  PubMed  Google Scholar 

  68. Wan HL, Yao NS (2006) Acute renal failure associated with gefitinib therapy. Lung 184:249–250

    Article  PubMed  Google Scholar 

  69. Kumasaka R, Nakamura N, Shirato K et al (2004) Side effects of therapy: case 1. Nephrotic syndrome associated with gefitinib therapy. Clin Oncol 22:2504–2505

    Article  Google Scholar 

  70. Krens LL, Baas JM, Verboom MC et al (2014) Pharmacokinetics and safety of cetuximab in a patient with renal dysfunction. Cancer Chemother Pharmacol 73:1303–1306

    Article  CAS  PubMed  Google Scholar 

  71. Aldoss IT, Plumb T, Zhen WK, Lydiatt DD, Ganti AK (2009) Cetuximab in hemodialysis: a case report. Head Neck 31:1647–1650

    Article  PubMed  Google Scholar 

  72. Fontana E, Pucci F, Ardizzoni A (2014) Colorectal cancer patient on maintenance dialysis successfully treated with cetuximab. Anticancer Drugs 25:120–122

    Article  CAS  PubMed  Google Scholar 

  73. Koch T, Derer S, Staudinger M et al (2013) Antibody-dependent cellular cytotoxicity in patients on chronic hemodialysis. Am J Nephrol 38:379–387

    Article  CAS  PubMed  Google Scholar 

  74. Rossi A, Maione P, Del Gaizo F, Guerriero C, Castaldo V, Gridelli C (2005) Safety profile of gefitinib in advanced non-small cell lung cancer elderly patients with chronic renal failure: two clinical cases. Lung Cancer 47:421–423

    Article  PubMed  Google Scholar 

  75. Del Conte A, Minatel E, Schinella D, Baresic T, Basso SM, Lumachi F (2014) Complete metabolic remission with Gefitinib in a hemodialysis patient with bone metastases from non-small cell lung cancer. Anticancer Res 34:319–322

    PubMed  Google Scholar 

  76. Togashi Y et al (2010) Pharmacokinetics of erlotinib and its active metabolite OSI-420 in patients with non-small cell lung cancer and chronic renal failure who are undergoing hemodialysis. J Thorac Oncol 5:601–605

    Article  PubMed  Google Scholar 

  77. Bersanelli M, Tiseo M, Artioli F, Lucchi L, Ardizzoni A (2014) Gefitinib and Afatinib treatment in an advanced non-small cell lung cancer (NSCLC) patient undergoing hemodialysis. Anticancer Res 34:3185–3188

    CAS  PubMed  Google Scholar 

  78. Porta C, Cosmai L, Gallieni M, Pedrazzoli P, Malberti F (2015) Renal effects of targeted anticancer therapies. Nat Rev Nephrol 11:354–370

    Article  CAS  PubMed  Google Scholar 

  79. Fornaro L, Lucchesi M, Caparello C et al (2011) Anti-HER agents in gastric cancer: from bench to bedside. Nat Rev Gastroenterol Hepatol 8:369–383

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camillo Porta.

Ethics declarations

Conflict of interest

Disclosure of potential conflicts of interest: LC nothing to disclose, MG nothing to disclose, CP nothing to disclose

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cosmai, L., Gallieni, M. & Porta, C. Renal toxicity of anticancer agents targeting HER2 and EGFR. J Nephrol 28, 647–657 (2015). https://doi.org/10.1007/s40620-015-0226-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40620-015-0226-9

Keywords

Navigation