Skip to main content

Advertisement

Log in

miR-199a-3p inhibits hepatocyte growth factor/c-Met signaling in renal cancer carcinoma

  • Research Article
  • Published:
Tumor Biology

Abstract

MicroRNAs (miRNAs) are a class of small non-coding RNAs that bind protein-coding mRNAs and negatively regulate protein expression by translation repression or mRNA cleavage. Accumulating evidence suggests that miRNAs are involved in cancer development and progression, acting as either tumor suppressors or oncogenes. It has been shown that miR-199a-3p was significantly down-regulated in several types of cancers. However, its role and relevance in renal cell carcinoma (RCC) are still largely unknown. Here, we show that miR-199a-3p is significantly down-regulated in human RCC primary tumors and cell lines compared to their non-tumor counterparts. Moreover, the down-regulation of miR-199a-3p is correlated with the histological grade and TNM (tumor–lymph node–metastasis) stage of RCC. Reintroducing miR-199a-3p in RCC cell lines 769-P and Caki-1 inhibited cell proliferation and caused G1 phase arrest. We found that c-Met was up-regulated in RCC cell lines and its expression could be repressed by miR-199a-3p. Moreover, c-Met was up-regulated in RCC primary tumors and reversely correlated with miR-199a-3p expression in the same paired RCC tissues. Reintroducing miR-199a-3p inhibited c-Met expression and led to attenuated activation of c-Met downstream signaling pathways including STAT3, mTOR and ERK1/2. We found that the concentrations of serum hepatocyte growth factor (HGF), the ligand of c-Met receptor, were significantly elevated in RCC patients compared to healthy persons. In addition, HGF treatment could promote proliferation of RCC cells, and the increased cell proliferation was abrogated by miR-199a-3p. Our findings indicated that miR-199a-3p target HGF/c-Met signaling pathway which is crucial for RCC development and suggest that miR-199a-3p may serve as a potential target miRNA for RCC therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mulders PF, Brouwers AH, Hulsbergen-van der Kaa CA, van Lin EN, Osanto S, de Mulder PH. Guideline ‘Renal cell carcinoma’. Ned Tijdschr Geneeskd. 2008;152:376–80.

    CAS  PubMed  Google Scholar 

  2. McDermott DF. Immunotherapy of metastatic renal cell carcinoma. Cancer. 2009;115:2298–305.

    Article  CAS  PubMed  Google Scholar 

  3. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  CAS  PubMed  Google Scholar 

  5. Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell. 2008;13:272–86.

    Article  CAS  PubMed  Google Scholar 

  6. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  7. Farh KK, Grimson A, Jan C, Lewis BP, Johnston WK, Lim LP, et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science. 2005;310:1817–21.

    Article  CAS  PubMed  Google Scholar 

  8. Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific MicroRNAs. Dev Cell. 2003;5:351–8.

    Article  CAS  PubMed  Google Scholar 

  9. Croce CM. Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet. 2009;10:704–14.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6:857–66.

    Article  CAS  PubMed  Google Scholar 

  11. Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006;25:6188–96.

    Article  CAS  PubMed  Google Scholar 

  12. Jung M, Mollenkopf HJ, Grimm C, Wagner I, Albrecht M, Waller T, et al. MicroRNA profiling of clear cell renal cell cancer identifies a robust signature to define renal malignancy. J Cell Mol Med. 2009;13:3918–28.

    Article  PubMed Central  PubMed  Google Scholar 

  13. White NM, Yousef GM. MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer. BMC Med. 2010;8:65.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T. New microRNAs from mouse and human. RNA. 2003;9:175–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007;8:166.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lee DY, Shatseva T, Jeyapalan Z, Du WW, Deng Z, Yang BB. A 3′-untranslated region (3′UTR) induces organ adhesion by regulating miR-199a* functions. PLoS One. 2009;4:e4527.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lee CG, Kim YW, Kim EH, Meng Z, Huang W, Hwang SJ, et al. Farnesoid X receptor protects hepatocytes from injury by repressing miR-199a-3p, which increases levels of LKB1. Gastroenterology. 2012;142:1206–17. e1207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Ukai T, Sato M, Akutsu H, Umezawa A, Mochida J. MicroRNA-199a-3p, microRNA-193b, and microRNA-320c are correlated to aging and regulate human cartilage metabolism. J Orthop Res. 2012;30:1915–22.

    Article  CAS  PubMed  Google Scholar 

  19. Wu JH, Gao Y, Ren AJ, Zhao SH, Zhong M, Peng YJ, et al. Altered microRNA expression profiles in retinas with diabetic retinopathy. Ophthalmic Res. 2012;47:195–201.

    Article  CAS  PubMed  Google Scholar 

  20. Wang J, He Q, Han C, Gu H, Jin L, Li Q, et al. p53-facilitated miR-199a-3p regulates somatic cell reprogramming. Stem Cells. 2012;30:1405–13.

    Article  CAS  PubMed  Google Scholar 

  21. Jiang J, Gusev Y, Aderca I, Mettler TA, Nagorney DM, Brackett DJ, et al. Association of MicroRNA expression in hepatocellular carcinomas with hepatitis infection, cirrhosis, and patient survival. Clin Cancer Res. 2008;14:419–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, et al. MicroRNA signatures in human ovarian cancer. Cancer Res. 2007;67:8699–707.

    Article  CAS  PubMed  Google Scholar 

  23. Ichimi T, Enokida H, Okuno Y, Kunimoto R, Chiyomaru T, Kawamoto K, et al. Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer. 2009;125:345–52.

    Article  CAS  PubMed  Google Scholar 

  24. Wang F, Zheng Z, Guo J, Ding X. Correlation and quantitation of microRNA aberrant expression in tissues and sera from patients with breast tumor. Gynecol Oncol. 2010;119:586–93.

    Article  CAS  PubMed  Google Scholar 

  25. Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, et al. MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J Biol Chem. 2008;283:18158–66.

    Article  CAS  PubMed  Google Scholar 

  26. Lin EA, Kong L, Bai XH, Luan Y, Liu CJ. miR-199a, a bone morphogenic protein 2-responsive MicroRNA, regulates chondrogenesis via direct targeting to Smad1. J Biol Chem. 2009;284:11326–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Oskowitz AZ, Lu J, Penfornis P, Ylostalo J, McBride J, Flemington EK, et al. Human multipotent stromal cells from bone marrow and microRNA: regulation of differentiation and leukemia inhibitory factor expression. Proc Natl Acad Sci U S A. 2008;105:18372–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Henry JC, Park JK, Jiang J, Kim JH, Nagorney DM, Roberts LR, et al. miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochem Biophys Res Commun. 2010;403:120–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Sakurai K, Furukawa C, Haraguchi T, Inada K, Shiogama K, Tagawa T, et al. MicroRNAs miR-199a-5p and -3p target the Brm subunit of SWI/SNF to generate a double-negative feedback loop in a variety of human cancers. Cancer Res. 2011;71:1680–9.

    Article  CAS  PubMed  Google Scholar 

  30. Shatseva T, Lee DY, Deng Z, Yang BB. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci. 2011;124:2826–36.

    Article  CAS  PubMed  Google Scholar 

  31. Migliore C, Petrelli A, Ghiso E, Corso S, Capparuccia L, Eramo A, et al. MicroRNAs impair MET-mediated invasive growth. Cancer Res. 2008;68:10128–36.

    Article  CAS  PubMed  Google Scholar 

  32. Fornari F, Milazzo M, Chieco P, Negrini M, Calin GA, Grazi GL, et al. MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Res. 2010;70:5184–93.

    Article  CAS  PubMed  Google Scholar 

  33. Duan Z, Choy E, Harmon D, Liu X, Susa M, Mankin H, et al. MicroRNA-199a-3p is downregulated in human osteosarcoma and regulates cell proliferation and migration. Mol Cancer Ther. 2011;10:1337–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Choi JS, Kim MK, Seo JW, Choi YL, Kim DH, Chun YK, et al. MET expression in sporadic renal cell carcinomas. J Korean Med Sci. 2006;21:672–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Gibney GT, Aziz SA, Camp RL, Conrad P, Schwartz BE, Chen CR, et al. c-Met is a prognostic marker and potential therapeutic target in clear cell renal cell carcinoma. Ann Oncol. 2013;24:343–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Tanimoto S, Fukumori T, El-Moula G, Shiirevnyamba A, Kinouchi S, Koizumi T, et al. Prognostic significance of serum hepatocyte growth factor in clear cell renal cell carcinoma: comparison with serum vascular endothelial growth factor. J Med Invest. 2008;55:106–11.

    Article  PubMed  Google Scholar 

  37. Horie S, Aruga S, Kawamata H, Okui N, Kakizoe T, Kitamura T. Biological role of HGF/MET pathway in renal cell carcinoma. J Urol. 1999;161:990–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81072097, 81272841), and Basic Research Program of Science and Technology Commission Foundation of Shanghai (10JC1409600).

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiran Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Ct value of the U6 RNA in 44 paired RCC tumor and matched non-tumor tissues using quantitative RT-PCR assay. Equal amounts of RNA were used for all the samples (JPEG 619 kb)

Fig. S2

Ct value of the U6 RNA in seven paired RCC tumor and matched non-tumor tissues using quantitative RT-PCR assay. Equal amounts of RNA were used for all the samples (JPEG 182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Dong, B., Zhang, J. et al. miR-199a-3p inhibits hepatocyte growth factor/c-Met signaling in renal cancer carcinoma. Tumor Biol. 35, 5833–5843 (2014). https://doi.org/10.1007/s13277-014-1774-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13277-014-1774-7

Keywords

Navigation