Skip to main content

Advertisement

Log in

Bone Anabolic Agents for the Treatment of Multiple Myeloma

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

The majority of patients with multiple myeloma develop bone osteolytic lesions, which may lead to severe complications, including pain and fractures. The pathogenesis of bone disease depends on uncoupled bone remodeling, characterized by increased bone resorption due to upregulation of osteoclast activity and decreased bone formation due to osteoblast inhibition. In myeloma, impaired osteoblast differentiation and increased apoptosis have been described. Responsible for these effects are integrin-mediated adhesion to tumor cells and soluble factors, including WNT antagonists, BMP2 inhibitors and numerous cytokines. Based on the evidence of osteoblast suppression in myeloma, bone anabolic agents have been developed and are currently undergoing clinical evaluation. Due to bidirectional inhibitory effects characterizing tumor cells and osteoblasts interactions, agents targeting osteoblasts are expected to reduce tumor burden along with improvement of bone health. This review summarizes the current knowledge on osteoblast inhibition in myeloma and provides an overview on the clinical grade agents with bone anabolic properties, which represent new promising therapeutic strategies in myeloma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Roodman GD (2006) New potential targets for treating myeloma bone disease. Clin Cancer Res 12(20 Pt 2):6270s–6273s

    Article  PubMed  CAS  Google Scholar 

  2. Coleman RE (1997) Skeletal complications of malignancy. Cancer 80(8 Suppl):1588–1594

    Article  PubMed  CAS  Google Scholar 

  3. Saad F, Lipton A, Cook R, Chen YM, Smith M, Coleman R (2007) Pathologic fractures correlate with reduced survival in patients with malignant bone disease. Cancer 110(8):1860–1867

    Article  PubMed  Google Scholar 

  4. Valentin-Opran A, Charhon SA, Meunier PJ, Edouard CM, Arlot ME (1982) Quantitative histology of myeloma-induced bone changes. Br J Haematol 52(4):601–610

    Article  PubMed  CAS  Google Scholar 

  5. Bataille R, Chappard D, Marcelli C, Dessauw P, Sany J, Baldet P, Alexandre C (1989) Mechanisms of bone destruction in multiple myeloma: the importance of an unbalanced process in determining the severity of lytic bone disease. J Clin Oncol 7(12):1909–1914

    PubMed  CAS  Google Scholar 

  6. Taube T, Beneton MN, McCloskey EV, Rogers S, Greaves M, Kanis JA (1992) Abnormal bone remodelling in patients with myelomatosis and normal biochemical indices of bone resorption. Eur J Haematol 49(4):192–198

    Article  PubMed  CAS  Google Scholar 

  7. Lentzsch S, Gries M, Janz M, Bargou R, Dorken B, Mapara MY (2003) Macrophage inflammatory protein 1-alpha (MIP-1 alpha) triggers migration and signaling cascades mediating survival and proliferation in multiple myeloma (MM) cells. Blood 101(9):3568–3573

    Article  PubMed  CAS  Google Scholar 

  8. Podar K, Anderson KC (2005) The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications. Blood 105(4):1383–1395

    Article  PubMed  CAS  Google Scholar 

  9. Alsayed Y, Ngo H, Runnels J, Leleu X, Singha UK, Pitsillides CM, Spencer JA, Kimlinger T, Ghobrial JM, Jia X, Lu G, Timm M, Kumar A, Cote D, Veilleux I, Hedin KE, Roodman GD, Witzig TE, Kung AL, Hideshima T, Anderson KC, Lin CP, Ghobrial IM (2007) Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 109(7):2708–2717

    PubMed  CAS  Google Scholar 

  10. Yaccoby S, Wezeman MJ, Zangari M, Walker R, Cottler-Fox M, Gaddy D, Ling W, Saha R, Barlogie B, Tricot G, Epstein J (2006) Inhibitory effects of osteoblasts and increased bone formation on myeloma in novel culture systems and a myelomatous mouse model. Haematologica 91(2):192–199

    PubMed  CAS  Google Scholar 

  11. Giuliani N, Rizzoli V, Roodman GD (2006) Multiple myeloma bone disease: pathophysiology of osteoblast inhibition. Blood 108(13):3992–3996

    Article  PubMed  CAS  Google Scholar 

  12. Jemal A, Siegel R, Xu J, Ward E Cancer statistics, 2010. CA: a cancer journal for clinicians 60 (5):277–300

  13. Franz-Odendaal TA, Hall BK, Witten PE (2006) Buried alive: how osteoblasts become osteocytes. Dev Dyn 235(1):176–190

    Article  PubMed  CAS  Google Scholar 

  14. Komori T (2006) Regulation of osteoblast differentiation by transcription factors. J Cell Biochem 99(5):1233–1239

    Article  PubMed  CAS  Google Scholar 

  15. Edwards CM, Edwards JR, Lwin ST, Esparza J, Oyajobi BO, McCluskey B, Munoz S, Grubbs B, Mundy GR (2008) Increasing Wnt signaling in the bone marrow microenvironment inhibits the development of myeloma bone disease and reduces tumor burden in bone in vivo. Blood 111(5):2833–2842

    Article  PubMed  CAS  Google Scholar 

  16. Li X, Pennisi A, Yaccoby S (2008) Role of decorin in the antimyeloma effects of osteoblasts. Blood 112(1):159–168

    Article  PubMed  CAS  Google Scholar 

  17. Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barille S (2001) Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood 98(13):3527–3533

    Article  PubMed  CAS  Google Scholar 

  18. Qiang YW, Chen Y, Stephens O, Brown N, Chen B, Epstein J, Barlogie B, Shaughnessy JD Jr (2008) Myeloma-derived Dickkopf-1 disrupts Wnt-regulated osteoprotegerin and RANKL production by osteoblasts: a potential mechanism underlying osteolytic bone lesions in multiple myeloma. Blood 112(1):196–207

    Article  PubMed  CAS  Google Scholar 

  19. Sims NA, Gooi JH (2008) Bone remodeling: multiple cellular interactions required for coupling of bone formation and resorption. Semin Cell Dev Biol 19(5):444–451

    Article  PubMed  CAS  Google Scholar 

  20. Silvestris F, Cafforio P, Calvani N, Dammacco F (2004) Impaired osteoblastogenesis in myeloma bone disease: role of upregulated apoptosis by cytokines and malignant plasma cells. Br J Haematol 126(4):475–486

    Article  PubMed  Google Scholar 

  21. Giuliani N, Storti P, Abeltino M, Bolzoni M, Ferretti M, Lazzaretti M, Dalla Palma B, Todoerti K, Martella E, Agnelli L, Neri A, Rizzoli V, Palumbo C (2010) In vitro and in vivo evidences of osteocyte involvement in myeloma-induced osteolysis. Blood:Abstract 131

  22. Giuliani N, Colla S, Morandi F, Lazzaretti M, Sala R, Bonomini S, Grano M, Colucci S, Svaldi M, Rizzoli V (2005) Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood 106(7):2472–2483

    Article  PubMed  CAS  Google Scholar 

  23. Komori T Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell and tissue research 339(1):189–195

  24. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T (1997) Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89(5):755–764

    Article  PubMed  CAS  Google Scholar 

  25. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29

    Article  PubMed  CAS  Google Scholar 

  26. Baek WY, de Crombrugghe B, Kim JE Postnatally induced inactivation of Osterix in osteoblasts results in the reduction of bone formation and maintenance. Bone 46 (4):920–928

  27. Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PV, Komm BS, Javed A, van Wijnen AJ, Stein JL, Stein GS, Lian JB (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280(39):33132–33140

    Article  PubMed  CAS  Google Scholar 

  28. Takada I, Mihara M, Suzawa M, Ohtake F, Kobayashi S, Igarashi M, Youn MY, Takeyama K, Nakamura T, Mezaki Y, Takezawa S, Yogiashi Y, Kitagawa H, Yamada G, Takada S, Minami Y, Shibuya H, Matsumoto K, Kato S (2007) A histone lysine methyltransferase activated by non-canonical Wnt signalling suppresses PPAR-gamma transactivation. Nat Cell Biol 9(11):1273–1285

    Article  PubMed  CAS  Google Scholar 

  29. Giuliani N, Mangoni M, Rizzoli V (2009) Osteogenic differentiation of mesenchymal stem cells in multiple myeloma: identification of potential therapeutic targets. Exp Hematol 37(8):879–886

    Article  PubMed  CAS  Google Scholar 

  30. Tian E, Zhan F, Walker R, Rasmussen E, Ma Y, Barlogie B, Shaughnessy JD Jr (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349(26):2483–2494

    Article  PubMed  CAS  Google Scholar 

  31. Yaccoby S, Ling W, Zhan F, Walker R, Barlogie B, Shaughnessy JD Jr (2007) Antibody-based inhibition of DKK1 suppresses tumor-induced bone resorption and multiple myeloma growth in vivo. Blood 109(5):2106–2111

    Article  PubMed  CAS  Google Scholar 

  32. Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Donofrio G, Bonomini S, Sala R, Mangoni M, Rizzoli V (2007) Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment. Cancer Res 67(16):7665–7674

    Article  PubMed  CAS  Google Scholar 

  33. Fulciniti M, Tassone P, Hideshima T, Vallet S, Nanjappa P, Ettenberg SA, Shen Z, Patel N, Tai YT, Chauhan D, Mitsiades C, Prabhala R, Raje N, Anderson KC, Stover DR, Munshi NC (2009) Anti-DKK1 mAb (BHQ880) as a potential therapeutic agent for multiple myeloma. Blood 114(2):371–379

    Article  PubMed  CAS  Google Scholar 

  34. Heath DJ, Chantry AD, Buckle CH, Coulton L, Shaughnessy JD, Evans HR, Snowden JA, Stover DR, Vanderkerken K, Croucher PI (2009) Inhibiting Dickkopf-1 (Dkk1) removes suppression of bone formation and prevents the development of osteolytic bone disease in multiple myeloma. J Bone Miner Res 24(3):425–436

    Google Scholar 

  35. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den Ende J, Willems P, Paes-Alves AF, Hill S, Bueno M, Ramos FJ, Tacconi P, Dikkers FG, Stratakis C, Lindpaintner K, Vickery B, Foernzler D, Van Hul W (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10(5):537–543

    Article  PubMed  CAS  Google Scholar 

  36. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K, Appleby M, Brunkow ME, Latham JA (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276

    Article  PubMed  CAS  Google Scholar 

  37. Terpos E, Christoulas D, Katodritou E, Bratengeier C, Lindner C, Harmelin S, Hawa G, Boutsikas G, Migkou M, Gavriatopoulou M, Michalis E, Pouli C, Kastritis E, K Z, Dimopoulos MA (2009) High serum sclerostin correlates with advanced stage, increased bone resorption, reduced osteoblast function, and poor survival in newly-diagnosed patients with multiple myeloma Blood: Abstract 425

  38. Colucci S, Brunetti G, Oranger A, Mori G, Sardone F, Liso V, Curci P, Miccolis R, Rinaldi E, Specchia G, Passeri G, Zallone A, Rizzi R, Grano M (2010) Myeloma cells induce osteoblast suppression through sclerostin secretion. Blood:Abstract 2961

  39. Oshima T, Abe M, Asano J, Hara T, Kitazoe K, Sekimoto E, Tanaka Y, Shibata H, Hashimoto T, Ozaki S, Kido S, Inoue D, Matsumoto T (2005) Myeloma cells suppress bone formation by secreting a soluble Wnt inhibitor, sFRP-2. Blood 106(9):3160–3165

    Article  PubMed  CAS  Google Scholar 

  40. Ryoo HM, Lee MH, Kim YJ (2006) Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 366(1):51–57

    Article  PubMed  CAS  Google Scholar 

  41. Woodruff TK (1998) Regulation of cellular and system function by activin. Biochem Pharmacol 55(7):953–963

    Article  PubMed  CAS  Google Scholar 

  42. Derynck R, Akhurst RJ, Balmain A (2001) TGF-beta signaling in tumor suppression and cancer progression. Nat Genet 29(2):117–129

    Article  PubMed  CAS  Google Scholar 

  43. Samee N, Geoffroy V, Marty C, Schiltz C, Vieux-Rochas M, Levi G, de Vernejoul MC (2008) Dlx5, a positive regulator of osteoblastogenesis, is essential for osteoblast-osteoclast coupling. Am J Pathol 173(3):773–780

    Article  PubMed  CAS  Google Scholar 

  44. Holleville N, Quilhac A, Bontoux M, Monsoro-Burq AH (2003) BMP signals regulate Dlx5 during early avian skull development. Dev Biol 257(1):177–189

    Article  PubMed  CAS  Google Scholar 

  45. Bennett CN, Longo KA, Wright WS, Suva LJ, Lane TF, Hankenson KD, MacDougald OA (2005) Regulation of osteoblastogenesis and bone mass by Wnt10b. Proc Natl Acad Sci U S A 102(9):3324–3329

    Article  PubMed  CAS  Google Scholar 

  46. Lee MH, Kim YJ, Kim HJ, Park HD, Kang AR, Kyung HM, Sung JH, Wozney JM, Kim HJ, Ryoo HM (2003) BMP-2-induced Runx2 expression is mediated by Dlx5, and TGF-beta 1 opposes the BMP-2-induced osteoblast differentiation by suppression of Dlx5 expression. J Biol Chem 278(36):34387–34394

    Article  PubMed  CAS  Google Scholar 

  47. Vallet S, Mukherjee S, Vaghela N, Hideshima T, Fulciniti M, Pozzi S, Santo L, Cirstea D, Patel K, Sohani R, Guimaraes A, Xie W, Chauhan D, Schoonmaker J, Attar E, Churchill M, Weller E, Munshi N, Seehra J, Weissleder R, Anderson K, Scadden D, Raje N (2010) Activin A promotes multiple myeloma-induced osteolysis and is a promising target for myeloma bone disease. Proc Natl Acad Sci U S A 107(11):5124–5129

    Google Scholar 

  48. Terpos E, Christoulas D, Kastritis E, Gkotzamanidou M, Gavriatopoulou M, Eleutherakis-Papaiakovou E, Migkou M, Roussou M, Papatheodorou A, Dimopoulos MA (2010) Elevated levels of circulating activin-A correlate with features of advanced disease, extensive bone involvement and inferior survival in patients with multiple myeloma. Blood:Abstract 2967

  49. Fuller K, Bayley KE, Chambers TJ (2000) Activin A is an essential cofactor for osteoclast induction. Biochem Biophys Res Commun 268(1):2–7

    Article  PubMed  CAS  Google Scholar 

  50. Shiozaki M, Sakai R, Tabuchi M, Nakamura T, Sugino K, Sugino H, Eto Y (1992) Evidence for the participation of endogenous activin A/erythroid differentiation factor in the regulation of erythropoiesis. Proc Natl Acad Sci U S A 89(5):1553–1556

    Article  PubMed  CAS  Google Scholar 

  51. Matzuk MM, Kumar TR, Bradley A (1995) Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374(6520):356–360

    Article  PubMed  CAS  Google Scholar 

  52. Chantry AD, Heath D, Mulivor AW, Pearsall S, Baud’huin M, Coulton L, Evans H, Abdul N, Werner ED, Bouxsein ML, Key ML, Seehra J, Arnett TR, Vanderkerken K, Croucher P (2010) Inhibiting activin-A signaling stimulates bone formation and prevents cancer induced bone destruction in vivo. J Bone Miner Res 25(12):2633–2646

    Google Scholar 

  53. Alliston T, Choy L, Ducy P, Karsenty G, Derynck R (2001) TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 20(9):2254–2272

    Article  PubMed  CAS  Google Scholar 

  54. Takeuchi K, Abe M, Hiasa M, Oda A, Amou H, Kido S, Harada T, Tanaka O, Miki H, Nakamura S, Nakano A, Kagawa K, Yata K, Ozaki S, Matsumoto T Tgf-Beta inhibition restores terminal osteoblast differentiation to suppress myeloma growth. PloS one 5 (3):e9870

  55. Mohammad KS, Chen CG, Balooch G, Stebbins E, McKenna CR, Davis H, Niewolna M, Peng XH, Nguyen DH, Ionova-Martin SS, Bracey JW, Hogue WR, Wong DH, Ritchie RO, Suva LJ, Derynck R, Guise TA, Alliston T (2009) Pharmacologic inhibition of the TGF-beta type I receptor kinase has anabolic and anti-catabolic effects on bone. PloS one 4(4):e5275

    Article  PubMed  Google Scholar 

  56. Standal T, Abildgaard N, Fagerli UM, Stordal B, Hjertner O, Borset M, Sundan A (2007) HGF inhibits BMP-induced osteoblastogenesis: possible implications for the bone disease of multiple myeloma. Blood 109(7):3024–3030

    PubMed  CAS  Google Scholar 

  57. Uneda S, Hata H, Matsuno F, Harada N, Mitsuya Y, Kawano F, Mitsuya H (2003) Macrophage inflammatory protein-1 alpha is produced by human multiple myeloma (MM) cells and its expression correlates with bone lesions in patients with MM. Br J Haematol 120(1):53–55

    Article  PubMed  CAS  Google Scholar 

  58. Terpos E, Politou M, Szydlo R, Goldman JM, Apperley JF, Rahemtulla A (2003) Serum levels of macrophage inflammatory protein-1 alpha (MIP-1alpha) correlate with the extent of bone disease and survival in patients with multiple myeloma. Br J Haematol 123(1):106–109

    Article  PubMed  CAS  Google Scholar 

  59. Roussou M, Tasidou A, Dimopoulos MA, Kastritis E, Migkou M, Christoulas D, Gavriatopoulou M, Zagouri F, Matsouka C, Anagnostou D, Terpos E (2009) Increased expression of macrophage inflammatory protein-1alpha on trephine biopsies correlates with extensive bone disease, increased angiogenesis and advanced stage in newly diagnosed patients with multiple myeloma. Leukemia 23(11):2177–2181

    Article  PubMed  CAS  Google Scholar 

  60. Han JH, Choi SJ, Kurihara N, Koide M, Oba Y, Roodman GD (2001) Macrophage inflammatory protein-1alpha is an osteoclastogenic factor in myeloma that is independent of receptor activator of nuclear factor kappaB ligand. Blood 97(11):3349–3353

    Article  PubMed  CAS  Google Scholar 

  61. Tsubaki M, Kato C, Manno M, Ogaki M, Satou T, Itoh T, Kusunoki T, Tanimori Y, Fujiwara K, Matsuoka H, Nishida S (2007) Macrophage inflammatory protein-1alpha (MIP-1alpha) enhances a receptor activator of nuclear factor kappaB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3K/Akt pathways. Mol Cell Biochem 304(1–2):53–60

    Article  PubMed  CAS  Google Scholar 

  62. Vallet S, Raje N, Ishitsuka K, Hideshima T, Podar K, Chhetri S, Pozzi S, Breitkreutz I, Kiziltepe T, Yasui H, Ocio EM, Shiraishi N, Jin J, Okawa Y, Ikeda H, Mukherjee S, Vaghela N, Cirstea D, Ladetto M, Boccadoro M, Anderson KC (2007) MLN3897, a novel CCR1 inhibitor, impairs osteoclastogenesis and inhibits the interaction of multiple myeloma cells and osteoclasts. Blood 110(10):3744–3752

    Article  PubMed  CAS  Google Scholar 

  63. Menu E, De Leenheer E, De Raeve H, Coulton L, Imanishi T, Miyashita K, Van Valckenborgh E, Van Riet I, Van Camp B, Horuk R, Croucher P, Vanderkerken K (2006) Role of CCR1 and CCR5 in homing and growth of multiple myeloma and in the development of osteolytic lesions: a study in the 5TMM model. Clin Exp Metastasis 23(5–6):291–300

    Article  PubMed  CAS  Google Scholar 

  64. Vallet S, Pozzi S, Patel K, Vaghela N, Fulciniti M, Veiby P, Hideshima T, Santo L, Cirstea D, Scadden D, Anderson K, Raje N (2011) A novel role for CCL3 (MIP-1α) in Myeloma-induced bone disease via osteocalcin downregulation and inhibition of osteoblast function. Leukemia 25(7):1174–1181

    Google Scholar 

  65. Nanes MS (2003) Tumor necrosis factor-alpha: molecular and cellular mechanisms in skeletal pathology. Gene 321:1–15

    Article  PubMed  CAS  Google Scholar 

  66. Vincent C, Findlay DM, Welldon KJ, Wijenayaka AR, Zheng TS, Haynes DR, Fazzalari NL, Evdokiou A, Atkins GJ (2009) Pro-inflammatory cytokines TNF-related weak inducer of apoptosis (TWEAK) and TNFalpha induce the mitogen-activated protein kinase (MAPK)-dependent expression of sclerostin in human osteoblasts. J Bone Miner Res 24(8):1434–1449

    Article  PubMed  CAS  Google Scholar 

  67. D’Souza S, Del Prete D, Esteve F, Sammut B, Yu S, Xiao G, Galson D, Roodman D (2009) Multiple myeloma cell induction of GFI-1 in stromal cells suppresses osteoblast differentiation in patients with myeloma. Blood 114:742

    Article  Google Scholar 

  68. Olfa G, Christophe C, Philippe L, Romain S, Khaled H, Pierre H, Odile B, Jean-Christophe D RUNX2 regulates the effects of TNFalpha on proliferation and apoptosis in SaOs-2 cells. Bone 46(4):901–910

  69. Jourdan M, Tarte K, Legouffe E, Brochier J, Rossi JF, Klein B (1999) Tumor necrosis factor is a survival and proliferation factor for human myeloma cells. Eur Cytokine Netw 10(1):65–70

    PubMed  CAS  Google Scholar 

  70. Lee JW, Chung HY, Ehrlich LA, Jelinek DF, Callander NS, Roodman GD, Choi SJ (2004) IL-3 expression by myeloma cells increases both osteoclast formation and growth of myeloma cells. Blood 103(6):2308–2315

    Article  PubMed  CAS  Google Scholar 

  71. Ehrlich LA, Chung HY, Ghobrial I, Choi SJ, Morandi F, Colla S, Rizzoli V, Roodman GD, Giuliani N (2005) IL-3 is a potential inhibitor of osteoblast differentiation in multiple myeloma. Blood 106(4):1407–1414

    Article  PubMed  CAS  Google Scholar 

  72. Giuliani N, Morandi F, Tagliaferri S, Colla S, Bonomini S, Sammarelli G, Rizzoli V (2006) Interleukin-3 (IL-3) is overexpressed by T lymphocytes in multiple myeloma patients. Blood 107(2):841–842

    Article  PubMed  CAS  Google Scholar 

  73. Giuliani N, Colla S, Sala R, Moroni M, Lazzaretti M, La Monica S, Bonomini S, Hojden M, Sammarelli G, Barille S, Bataille R, Rizzoli V (2002) Human myeloma cells stimulate the receptor activator of nuclear factor-kappa B ligand (RANKL) in T lymphocytes: a potential role in multiple myeloma bone disease. Blood 100(13):4615–4621

    Article  PubMed  CAS  Google Scholar 

  74. Cocco C, Giuliani N, Di Carlo E, Ognio E, Storti P, Abeltino M, Sorrentino C, Ponzoni M, Ribatti D, Airoldi I Interleukin-27 acts as multifunctional antitumor agent in multiple myeloma. Clin Cancer Res 16(16):4188–4197

  75. Zhao C, Irie N, Takada Y, Shimoda K, Miyamoto T, Nishiwaki T, Suda T, Matsuo K (2006) Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab 4(2):111–121

    Article  PubMed  CAS  Google Scholar 

  76. Pennisi A, Ling W, Li X, Khan S, Shaughnessy JD Jr, Barlogie B, Yaccoby S (2009) The ephrinB2/EphB4 axis is dysregulated in osteoprogenitors from myeloma patients and its activation affects myeloma bone disease and tumor growth. Blood 114(9):1803–1812

    Article  PubMed  CAS  Google Scholar 

  77. Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, Lipton A, Keller A, Ballester O, Kovacs MJ, Blacklock HA, Bell R, Simeone J, Reitsma DJ, Heffernan M, Seaman J, Knight RD (1996) Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med 334(8):488–493

    Article  PubMed  CAS  Google Scholar 

  78. Hideshima T, Mitsiades C, Tonon G, Richardson PG, Anderson KC (2007) Understanding multiple myeloma pathogenesis in the bone marrow to identify new therapeutic targets. Nat Rev Cancer 7(8):585–598

    Article  PubMed  CAS  Google Scholar 

  79. von Metzler I, Krebbel H, Hecht M, Manz RA, Fleissner C, Mieth M, Kaiser M, Jakob C, Sterz J, Kleeberg L, Heider U, Sezer O (2007) Bortezomib inhibits human osteoclastogenesis. Leukemia 21(9):2025–2034

    Article  Google Scholar 

  80. Oyajobi BO, Garrett IR, Gupta A, Flores A, Esparza J, Munoz S, Zhao M, Mundy GR (2007) Stimulation of new bone formation by the proteasome inhibitor, bortezomib: implications for myeloma bone disease. Br J Haematol 139(3):434–438

    Article  PubMed  CAS  Google Scholar 

  81. Giuliani N, Morandi F, Tagliaferri S, Lazzaretti M, Bonomini S, Crugnola M, Mancini C, Martella E, Ferrari L, Tabilio A, Rizzoli V (2007) The proteasome inhibitor bortezomib affects osteoblast differentiation in vitro and in vivo in multiple myeloma patients. Blood 110(1):334–338

    Article  PubMed  CAS  Google Scholar 

  82. Mukherjee S, Raje N, Schoonmaker JA, Liu JC, Hideshima T, Wein MN, Jones DC, Vallet S, Bouxsein ML, Pozzi S, Chhetri S, Seo YD, Aronson JP, Patel C, Fulciniti M, Purton LE, Glimcher LH, Lian JB, Stein G, Anderson KC, Scadden DT (2008) Pharmacologic targeting of a stem/progenitor population in vivo is associated with enhanced bone regeneration in mice. J Clin Invest 118(2):491–504

    PubMed  CAS  Google Scholar 

  83. De Matteo M, Brunetti AE, Maiorano E, Cafforio P, Dammacco F, Silvestris F Constitutive down-regulation of Osterix in osteoblasts from myeloma patients: in vitro effect of Bortezomib and Lenalidomide. Leukemia research 34(2):243–249

  84. Deleu S, Lemaire M, Arts J, Menu E, Van Valckenborgh E, Vande Broek I, De Raeve H, Coulton L, Van Camp B, Croucher P, Vanderkerken K (2009) Bortezomib alone or in combination with the histone deacetylase inhibitor JNJ-26481585: effect on myeloma bone disease in the 5T2MM murine model of myeloma. Cancer Res 69(13):5307–5311

    Article  PubMed  CAS  Google Scholar 

  85. Pennisi A, Li X, Ling W, Khan S, Zangari M, Yaccoby S (2009) The proteasome inhibitor, bortezomib suppresses primary myeloma and stimulates bone formation in myelomatous and nonmyelomatous bones in vivo. Am J Hematol 84(1):6–14

    Article  PubMed  CAS  Google Scholar 

  86. Kumar SK, Rajkumar SV, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Zeldenrust SR, Dingli D, Russell SJ, Lust JA, Greipp PR, Kyle RA, Gertz MA (2008) Improved survival in multiple myeloma and the impact of novel therapies. Blood 111(5):2516–2520

    Article  PubMed  CAS  Google Scholar 

  87. Zangari M, Esseltine D, Lee CK, Barlogie B, Elice F, Burns MJ, Kang SH, Yaccoby S, Najarian K, Richardson P, Sonneveld P, Tricot G (2005) Response to bortezomib is associated to osteoblastic activation in patients with multiple myeloma. Br J Haematol 131(1):71–73

    Article  PubMed  CAS  Google Scholar 

  88. Terpos E, Heath DJ, Rahemtulla A, Zervas K, Chantry A, Anagnostopoulos A, Pouli A, Katodritou E, Verrou E, Vervessou EC, Dimopoulos MA, Croucher PI (2006) Bortezomib reduces serum dickkopf-1 and receptor activator of nuclear factor-kappaB ligand concentrations and normalises indices of bone remodelling in patients with relapsed multiple myeloma. Br J Haematol 135(5):688–692

    Article  PubMed  CAS  Google Scholar 

  89. Zangari M, Yaccoby S, Pappas L, Cavallo F, Kumar NS, Ranganathan S, Suva LJ, Gruenwald JM, Kern S, Zhan F, Esseltine D, Tricot G A prospective evaluation of the biochemical, metabolic, hormonal and structural bone changes associated with bortezomib response in multiple myeloma patients. Haematologica 96(2):333–336

  90. Delforge M, Terpos E, Richardson PG, Shpilberg O, Khuageva NK, Schlag R, Dimopoulos MA, Kropff M, Spicka I, Petrucci MT, Samoilova OS, Mateos MV, Magen-Nativ H, Goldschmidt H, Esseltine DL, Ricci DS, Liu K, Deraedt W, Cakana A, van de Velde H, San Miguel JF (2011) Fewer bone disease events, improvement in bone remodelling, and evidence of bone healing with bortezomib plus melphalan-prednisone versus melphalan-prednisone, in the phase III VISTA trial in multiple myeloma. Eur J Haematol 86(5):372–384

    Google Scholar 

  91. Terpos E, Kastritis E, Roussou M, Heath D, Christoulas D, Anagnostopoulos N, Eleftherakis-Papaiakovou E, Tsionos K, Croucher P, Dimopoulos MA (2008) The combination of bortezomib, melphalan, dexamethasone and intermittent thalidomide is an effective regimen for relapsed/refractory myeloma and is associated with improvement of abnormal bone metabolism and angiogenesis. Leukemia 22(12):2247–2256

    Article  PubMed  CAS  Google Scholar 

  92. Terpos E, Christoulas D, Kokkoris P, Gavriatopoulou M, Boutsikas G, Migkou M, Anargyrou K, Kastritis E, Tsionos K, Dimopoulos MA (2009) Increased bone mineral density in a subset of patients with relapsed multiple myeloma who received the combination of bortezomib, dexamethasone and zoledronic acid. Haematologica 94(suppl2):385, abs. 0958

    Google Scholar 

  93. Pearsall RS, Canalis E, Cornwall-Brady M, Underwood KW, Haigis B, Ucran J, Kumar R, Pobre E, Grinberg A, Werner ED, Glatt V, Stadmeyer L, Smith D, Seehra J, Bouxsein ML (2008) A soluble activin type IIA receptor induces bone formation and improves skeletal integrity. Proc Natl Acad Sci U S A 105(19):7082–7087

    Article  PubMed  CAS  Google Scholar 

  94. Tassone P, Neri P, Carrasco DR, Burger R, Goldmacher VS, Fram R, Munshi V, Shammas MA, Catley L, Jacob GS, Venuta S, Anderson KC, Munshi NC (2005) A clinically relevant SCID-hu in vivo model of human multiple myeloma. Blood 106(2):713–716

    Article  PubMed  CAS  Google Scholar 

  95. Ruckle J, Jacobs M, Kramer W, Pearsall AE, Kumar R, Underwood KW, Seehra J, Yang Y, Condon CH, Sherman ML (2009) Single-dose, randomized, double-blind, placebo-controlled study of ACE-011 (ActRIIA-IgG1) in postmenopausal women. J Bone Miner Res 24(4):744–752

    Article  PubMed  CAS  Google Scholar 

  96. Abdulkadyrov K, Salogub G, Khuazheva N, Woolf R, Haltom E, Borgstein N, Knight R, Renshaw G, Yang Y, Sherman M (2009) ACE-011, a soluble activin receptor type iia igg-fc fusion protein, increases hemoglobin (Hb) and improves bone lesions in multiple myeloma patients receiving myelosuppressive chemotherapy: preliminary analysis. Blood: Abstract 749

  97. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, Gao Y, Shalhoub V, Tipton B, Haldankar R, Chen Q, Winters A, Boone T, Geng Z, Niu QT, Ke HZ, Kostenuik PJ, Simonet WS, Lacey DL, Paszty C (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24(4):578–588

    Article  PubMed  CAS  Google Scholar 

  98. Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, Gong J, Gao Y, Cao J, Graham K, Tipton B, Cai J, Deshpande R, Zhou L, Hale MD, Lightwood DJ, Henry AJ, Popplewell AG, Moore AR, Robinson MK, Lacey DL, Simonet WS, Paszty C Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Miner Res 25(5):948–959

  99. Padhi D, Jang G, Stouch B, Fang L, Posvar E Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res 26(1):19–26

  100. Sukhdeo K, Mani M, Zhang Y, Dutta J, Yasui H, Rooney MD, Carrasco DE, Zheng M, He H, Tai YT, Mitsiades C, Anderson KC, Carrasco DR (2007) Targeting the beta-catenin/TCF transcriptional complex in the treatment of multiple myeloma. Proc Natl Acad Sci U S A 104(18):7516–7521

    Article  PubMed  Google Scholar 

  101. Choi SJ, Oba Y, Gazitt Y, Alsina M, Cruz J, Anderson J, Roodman GD (2001) Antisense inhibition of macrophage inflammatory protein 1-alpha blocks bone destruction in a model of myeloma bone disease. J Clin Invest 108(12):1833–1841

    PubMed  CAS  Google Scholar 

  102. Oyajobi BO, Franchin G, Williams PJ, Pulkrabek D, Gupta A, Munoz S, Grubbs B, Zhao M, Chen D, Sherry B, Mundy GR (2003) Dual effects of macrophage inflammatory protein-1alpha on osteolysis and tumor burden in the murine 5TGM1 model of myeloma bone disease. Blood 102(1):311–319

    Article  PubMed  CAS  Google Scholar 

  103. Oyajobi B, Dairaghi D, Gupta A, McCluskey B, Wang Y, Seitz L, Powers J, Miao S, Zhang P, Schall T, Jaen J (2010) CCR1 blockade by an orally-available CCR1 antagonist reduces tumor burden and osteolysis in vivo in a mouse model of myeloma bone disease blood. Blood: Abstract 3000

  104. Liang M, Mallari C, Rosser M, Ng HP, May K, Monahan S, Bauman JG, Islam I, Ghannam A, Buckman B, Shaw K, Wei GP, Xu W, Zhao Z, Ho E, Shen J, Oanh H, Subramanyam B, Vergona R, Taub D, Dunning L, Harvey S, Snider RM, Hesselgesser J, Morrissey MM, Perez HD (2000) Identification and characterization of a potent, selective, and orally active antagonist of the CC chemokine receptor-1. J Biol Chem 275(25):19000–19008

    Article  PubMed  CAS  Google Scholar 

  105. Reuss R, Schreiber V, Klein A, Infante-Duarte C, Filippi M, Pabst W, Pohl C, Oschmann P No significant effect of orally administered chemokine receptor 1 antagonist on intercellular adhesion molecule-3 expression in relapsing--remitting multiple sclerosis patients. Multiple sclerosis (Houndmills, Basingstoke, England) 16(3):366–369

  106. Clucas AT, Shah A, Zhang YD, Chow VF, Gladue RP (2007) Phase I evaluation of the safety, pharmacokinetics and pharmacodynamics of CP-481,715. Clin Pharmacokinet 46(9):757–766

    Article  PubMed  CAS  Google Scholar 

  107. Merritt JR, Liu J, Quadros E, Morris ML, Liu R, Zhang R, Jacob B, Postelnek J, Hicks CM, Chen W, Kimble EF, Rogers WL, O’Brien L, White N, Desai H, Bansal S, King G, Ohlmeyer MJ, Appell KC, Webb ML (2009) Novel pyrrolidine ureas as C-C chemokine receptor 1 (CCR1) antagonists. J Med Chem 52(5):1295–1301

    Article  PubMed  CAS  Google Scholar 

  108. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344(19):1434–1441

    Article  PubMed  CAS  Google Scholar 

  109. Pennisi A, Ling W, Li X, Khan S, Wang Y, Barlogie B, Shaughnessy JD, Jr., Yaccoby S Consequences of daily administered parathyroid hormone on myeloma growth, bone disease, and molecular profiling of whole myelomatous bone. PloS one 5(12):e15233

  110. Vallet S, Patel K, Cirstea D, Luly K, Pozzi S, Santo L, Eda H, Seehra J, Mahindra A, Scadden D, Raje N (2010) Lenalidomide in combination with the activin receptor type ii murine Fc protein RAP-011: preclinical rationale for a novel anti-myeloma strategy. Blood: Abstract 4075

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noopur Raje.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallet, S., Raje, N. Bone Anabolic Agents for the Treatment of Multiple Myeloma. Cancer Microenvironment 4, 339–349 (2011). https://doi.org/10.1007/s12307-011-0090-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0090-7

Keywords

Navigation