Skip to main content

Advertisement

Log in

Angiogenesis and Multiple Myeloma

  • Original Paper
  • Published:
Cancer Microenvironment

Abstract

The bone marrow microenvironment in multiple myeloma is characterized by an increased microvessel density. The production of pro-angiogenic molecules is increased and the production of angiogenic inhibitors is suppressed, leading to an “angiogenic switch”. Here we present an overview of the role of angiogenesis in multiple myeloma, the pro-angiogenic factors produced by myeloma cells and the microenvironment, and the mechanisms involved in the myeloma-induced angiogenic switch. Current data suggest that the increased bone marrow angiogenesis in multiple myeloma is due to the aberrant expression of angiogenic factors by myeloma cells, the subsequent increase in pro-angiogenic activity of normal plasma cells as a result of myeloma cell angiogenic activity, and the increased number of plasma cells overall. Hypoxia also contributes to the angiogenic properties of the myeloma marrow microenvironment. The transcription factor hypoxia-inducible factor-1α is overexpressed by myeloma cells and affects their transcriptional and angiogenic profiles. In addition, potential roles of the tumor suppressor gene inhibitor of growth family member 4 and homeobox B7 have also been recently highlighted as repressors of angiogenesis and pro-angiogenic related genes, respectively. This complex pathogenetic model of myeloma-induced angiogenesis suggests that several pro-angiogenic molecules and related genes in myeloma cells and the microenvironment are potential therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9:653–660

    Article  PubMed  CAS  Google Scholar 

  2. Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  PubMed  CAS  Google Scholar 

  3. Kerbel RS (2000) Tumor angiogenesis: past, present and the near future. Carcinogenesis 21:505–515

    Article  PubMed  CAS  Google Scholar 

  4. Bergers G, Benjamin LE (2003) Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3:401–410

    Article  PubMed  CAS  Google Scholar 

  5. Papetti M, Herman IM (2001) Mechanism of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282:947–970

    Google Scholar 

  6. Anderson KC, Carrasco RD (2011) Pathogenesis of myeloma. Annu Rev Pathol 28(6):249–274

    Article  CAS  Google Scholar 

  7. Asosingh K, De Raeve H, Menu E, Van Riet I, Van Marck E, Van Camp B, Vanderkerken K (2004) Angiogenic switch during 5T2MM murine myeloma tumorigenesis: role of CD45 heterogeneity. Blood 103:3131–3137

    Article  PubMed  CAS  Google Scholar 

  8. Vacca A, Ribatti D, Presta M, Minischetti M, Iurlaro M, Ria R, Albini A, Bussolino F, Dammacco F (1999) Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood 93:3064–3073

    PubMed  CAS  Google Scholar 

  9. Jakob C, Sterz J, Zavrski I, Heider U, Kleeberg L, Fleissner C, Kaiser M, Sezer O (2006) Angiogenesis in multiple myeloma. Eur J Cancer 42:1581–1590

    Article  PubMed  CAS  Google Scholar 

  10. Rajkumar SV, Mesa RA, Fonseca R, Schroeder G, Plevak MF, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Gertz MA, Kyle RA, Russell SJ, Greipp PR (2002) Bone marrow angiogenesis in 400 patients with monoclonal gammopathy of undetermined significance, multiple myeloma, and primary amyloidosis. Clin Cancer Res 8:2210–2216

    PubMed  Google Scholar 

  11. Alexandrakis MG, Passam FH, Dambaki C, Pappa CA, Stathopoulos EN (2004) The relation between bone marrow angiogenesis and the proliferation index Ki-67 in multiple myeloma. J Clin Pathol 57:856–860

    Article  PubMed  CAS  Google Scholar 

  12. Andersen NF, Standal T, Nielsen JL, Heickendorff L, Borset M, Sørensen FB, Abildgaard N (2005) Syndecan-1 and angiogenic cytokines in multiple myeloma: correlation with bone marrow angiogenesis and survival. Br J Haematol 128:210–217

    Article  PubMed  CAS  Google Scholar 

  13. Bhatti SS, Kumar L, Dinda AK, Dawar R (2006) Prognostic value of bone marrow angiogenesis in multiple myeloma: use of light microscopy as well as computerized image analyzer in the assessment of microvessel density and total vascular area in multiple myeloma and its correlation with various clinical, histological, and laboratory parameters. Am J Hematol 81:649–656

    Article  PubMed  Google Scholar 

  14. Hillengass J, Wasser K, Delorme S, Kiessling F, Zechmann C, Benner A, Kauczor HU, Ho AD, Goldschmidt H, Moehler TM (2007) Lumbar bone marrow microcirculation measurements from dynamic contrast-enhanced magnetic resonance imaging is a predictor of event-free survival in progressive multiple myeloma. Clin Cancer Res 13:475–481

    Article  PubMed  Google Scholar 

  15. Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Wellik L, Witzig TE, Gertz MA, Kyle RA, Greipp PR, Rajkumar SV (2003) Prognostic value of angiogenesis in solitary bone plasmacytoma. Blood 101:1715–1717

    Article  PubMed  CAS  Google Scholar 

  16. Kumar S, Gertz MA, Dispenzieri A, Lacy MQ, Wellik LA, Fonseca R, Lust JA, Witzig TE, Kyle RA, Greipp PR, Rajkumar SV (2004) Prognostic value of bone marrow angiogenesis in patients with multiple myeloma undergoing high-dose therapy. Bone Marrow Transplant 34:235–239

    Article  PubMed  CAS  Google Scholar 

  17. Moulopoulos LA, Dimopoulos MA, Christoulas D, Kastritis E, Anagnostou D, Koureas A, Roussou M, Gavriatopoulou M, Migkou M, Iakovaki M, Gkotzamanidou M, Tasidou A, Terpos E (2010) Diffuse MRI marrow pattern correlates with increased angiogenesis, advanced disease features and poor prognosis in newly diagnosed myeloma treated with novel agents. Leukemia 24:1206–1212

    Article  PubMed  CAS  Google Scholar 

  18. Munshi NC, Wilson C (2001) Increased bone marrow microvessel density in newly diagnosed multiple myeloma carries a poor prognosis. Semin Oncol 28:565–569

    Article  PubMed  CAS  Google Scholar 

  19. Pruneri G, Ponzoni M, Ferreri AJ, Decarli N, Tresoldi M, Raggi F, Baldessari C, Freschi M, Baldini L, Goldaniga M, Neri A, Carboni N, Bertolini F, Viale G (2002) Microvessel density, a surrogate marker of angiogenesis, is significantly related to survival in multiple myeloma patients. Br J Haematol 118:817–820

    Article  PubMed  Google Scholar 

  20. Sezer O, Niemöller K, Eucker J, Jakob C, Kaufmann O, Zavrski I, Dietel M, Possinger K (2000) Bone marrow microvessel density is a prognostic factor for survival in patients with multiple myeloma. Ann Hematol 79:574–577

    Article  PubMed  CAS  Google Scholar 

  21. Sezer O, Niemöller K, Jakob C, Zavrski I, Heider U, Eucker J, Kaufmann O, Possinger K (2001) Relationship between bone marrow angiogenesis and plasma cell infiltration and serum beta2-microglobulin levels in patients with multiple myeloma. Ann Hematol 80:598–601

    Article  PubMed  CAS  Google Scholar 

  22. Schreiber S, Ackermann J, Obermair A, Kaufmann H, Urbauer E, Aletaha K, Gisslinger H, Chott A, Huber H, Drach J (2000) Multiple myeloma with deletion of chromosome 13q is characterized by increased bone marrow neovascularization. Br J Haematol 110:605–609

    Article  PubMed  CAS  Google Scholar 

  23. Hillengass J, Zechmann CM, Nadler A, Hose D, Cremer FW, Jauch A, Heiss C, Benner A, Ho AD, Bartram CR, Kauczor HU, Delorme S, Goldschmidt H, Moehler TM (2008) Gain of 1q21 and distinct adverse cytogenetic abnormalities correlate with increased microcirculation in multiple myeloma. Int J Cancer 122:2871–2875

    Article  PubMed  CAS  Google Scholar 

  24. Sezer O, Niemöller K, Kaufmann O, Eucker J, Jakob C, Zavrski I, Possinger K (2001) Decrease of bone marrow angiogenesis in myeloma patients achieving a remission after chemotherapy. Eur J Haematol 66:238–244

    Article  PubMed  CAS  Google Scholar 

  25. Rajkumar SV, Fonseca R, Witzig TE, Gertz MA, Greipp PR (1999) Bone marrow angiogenesis in patients achieving complete response after stem cell transplantation for multiple myeloma. Leukemia 13:469–472

    Article  PubMed  CAS  Google Scholar 

  26. Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Witzig TE, Gertz MA, Kyle RA, Greipp PR, Rajkumar SV (2002) Bone marrow angiogenesis in multiple myeloma: effect of therapy. Br J Haematol 119:665–671

    Article  PubMed  CAS  Google Scholar 

  27. Kumar S, Witzig TE, Dispenzieri A, Lacy MQ, Wellik LE, Fonseca R, Lust JA, Gertz MA, Kyle RA, Greipp PR, Rajkumar SV (2004) Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia 18:624–627

    Article  PubMed  CAS  Google Scholar 

  28. Vacca A, Ribatti D (2006) Bone marrow angiogenesis in multiple myeloma. Leukemia 20:193–199

    Article  PubMed  CAS  Google Scholar 

  29. Ribatti D, Vacca A (2009) The role of monocytes-macrophages in vasculogenesis in multiple myeloma. Leukemia 23:1535–1536

    Article  PubMed  CAS  Google Scholar 

  30. Patenaude A, Parker J, Karsan A (2010) Involvement of endothelial progenitor cells in tumor vascularization. Microvasc Res 79:217–223

    Article  PubMed  CAS  Google Scholar 

  31. Ahn GO, Brown JM (2009) Role of endothelial progenitors and other bone marrow-derived cells in the development of the tumor vasculature. Angiogenesis 12:159–164

    Article  PubMed  CAS  Google Scholar 

  32. Zhang H, Vakil V, Braunstein M, Smith EL, Maroney J, Chen L, Dai K, Berenson JR, Hussain MM, Klueppelberg U, Norin AJ, Akman HO, Ozçelik T, Batuman OA (2005) Circulating endothelial progenitor cells in multiple myeloma: implications and significance. Blood 105:3286–3294

    Article  PubMed  CAS  Google Scholar 

  33. Scavelli C, Nico B, Cirulli T, Ria R, Di Pietro G, Mangieri D, Bacigalupo A, Mangialardi G, Coluccia AM, Caravita T, Molica S, Ribatti D, Dammacco F, Vacca A (2008) Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma. Oncogene 27:663–674

    Article  PubMed  CAS  Google Scholar 

  34. Chen H, Campbell RA, Chang Y, Li M, Wang CS, Li J, Sanchez E, Share M, Steinberg J, Berenson A, Shalitin D, Zeng Z, Gui D, Perez-Pinera P, Berenson RJ, Said J, Bonavida B, Deuel TF, Berenson JR (2009) Pleiotrophin produced by multiple myeloma induces transdifferentiation of monocytes into vascular endothelial cells: a novel mechanism of tumor-induced vasculogenesis. Blood 113:1992–2002

    Article  PubMed  CAS  Google Scholar 

  35. Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  PubMed  CAS  Google Scholar 

  36. Tjwa M, Luttun A, Autiero M, Carmeliet P (2003) VEGF and PlGF: two pleiotropic growth factors with distinct roles in development and homeostasis. Cell Tissue Res 314:5–14

    Article  PubMed  CAS  Google Scholar 

  37. Bellamy WT (2001) Expression of vascular endothelial growth factor and its receptors in multiple myeloma and other hematopoietic malignancies. Semin Oncol 28:551–559

    Article  PubMed  CAS  Google Scholar 

  38. Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Fonseca R, Greipp PR, Rajkumar SV (2003) Expression of VEGF and its receptors by myeloma cells. Leukemia 17:2025–2031

    Article  PubMed  CAS  Google Scholar 

  39. Ria R, Roccaro AM, Merchionne F, Vacca A, Dammacco F, Ribatti D (2003) Vascular endothelial growth factor and its receptors in multiple myeloma. Leukemia 17:1961–1966

    Article  PubMed  CAS  Google Scholar 

  40. Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM, Serve H, Berdel WE, Kienast J (2000) Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95:2630–2636

    PubMed  CAS  Google Scholar 

  41. Gupta D, Treon SP, Shima Y, Hideshima T, Podar K, Tai YT, Lin B, Lentzsch S, Davies FE, Chauhan D, Schlossman RL, Richardson P, Ralph P, Wu L, Payvandi F, Muller G, Stirling DI, Anderson KC (2001) Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications. Leukemia 15:1950–1961

    Article  PubMed  CAS  Google Scholar 

  42. Wang X, Zhang Z, Yao C (2011) Angiogenic activity of mesenchymal stem cells in multiple myeloma. Cancer Invest 29:37–41

    Article  PubMed  CAS  Google Scholar 

  43. Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T, Lin BK, Gupta D, Shima Y, Chauhan D, Mitsiades C, Raje N, Richardson P, Anderson KC (2001) Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98:428–435

    Article  PubMed  CAS  Google Scholar 

  44. Giuliani N, Lunghi P, Morandi F, Colla S, Bonomini S, Hojden M, Rizzoli V, Bonati A (2004) Downmodulation of ERK protein kinase activity inhibits VEGF secretion by human myeloma cells and myeloma-induced angiogenesis. Leukemia 18:628–635

    Article  PubMed  CAS  Google Scholar 

  45. Giuliani N, Colla S, Rizzoli V (2004) Angiogenic switch in multiple myeloma. Hematology 9:377–381

    Article  PubMed  CAS  Google Scholar 

  46. Di Raimondo F, Azzaro MP, Palumbo G, Bagnato S, Giustolisi G, Floridia P, Sortino G, Giustolisi R (2000) Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood. Haematologica 85:800–805

    PubMed  Google Scholar 

  47. Bisping G, Leo R, Wenning D, Dankbar B, Padro T, Kropff M, Scheffold C, Kroger M, Mesters RM, Berdel WE, Kienast J (2003) Paracrine interactions of basic fibroblast growth factor and interleukin-6 in multiple myeloma. Blood 101:2775–2783

    Article  PubMed  CAS  Google Scholar 

  48. Colla S, Morandi F, Lazzaretti M, Polistena P, Svaldi M, Coser P, Bonomini S, Hojden M, Martella E, Chisesi T, Rizzoli V, Giuliani N (2003) Do human myeloma cells directly produce basic FGF? Blood 102:3071–3072

    Article  PubMed  CAS  Google Scholar 

  49. Holash J, Wiegand SJ, Yancopoulos GD (1999) New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF. Oncogene 18:5356–5362

    Article  PubMed  CAS  Google Scholar 

  50. Davis S, Aldrich TH, Jones PF, Acheson A, Compton DL, Jain V, Ryan TE, Bruno J, Radziejewski C, Maisonpierre PC, Yancopoulos GD (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87:1161–1169

    Article  PubMed  CAS  Google Scholar 

  51. Kwak HJ, So JN, Lee SJ, Kim I, Koh GY (1999) Angiopoietin-1 is an apoptosis survival factor for endothelial cells. FEBS Letter 448:249–253

    Article  CAS  Google Scholar 

  52. Papapetropoulos A, Garcia-Cardena G, Dengler TJ, Maisonpierre PC, Yancopoulos GD, Sessa WC (1999) Direct actions of angiopoietin-1 on human endothelium: evidence for network stabilization, cell survival, and interaction with other angiogenic growth factors. Lab Invest 79:213–223

    PubMed  CAS  Google Scholar 

  53. Hayes AJ, Huang WQ, Mallah J, Yang D, Lippman ME, Li LY (1999) Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvasc Res 58:224–237

    Article  PubMed  CAS  Google Scholar 

  54. Tsigkos S, Koutsilieris M, Papapetropoulos A (2003) Angiopoietins in angiogenesis and beyond. Expert Opin Investig Drugs 12:933–941

    Article  PubMed  CAS  Google Scholar 

  55. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  PubMed  CAS  Google Scholar 

  56. Giuliani N, Colla S, Lazzaretti M, Sala R, Roti G, Mancini C, Bonomini S, Lunghi P, Hojden M, Genestreti G, Svaldi M, Coser P, Fattori PP, Sammarelli G, Gazzola GC, Bataille R, Almici C, Caramatti C, Mangoni L, Rizzoli V (2003) Proangiogenic properties of human myeloma cells: production of angiopoietin-1 and its potential relationship to myeloma-induced angiogenesis. Blood 102:638–645

    Article  PubMed  CAS  Google Scholar 

  57. Lin P, Polverini P, Dewhirst M, Shan S, Rao PS, Peters K (1997) Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J Clin Invest 100:2072–2078

    Article  PubMed  CAS  Google Scholar 

  58. Vacca A, Ria R, Semeraro F, Merchionne F, Coluccia M, Boccarelli A, Scavelli C, Nico B, Gernone A, Battelli F, Tabilio A, Guidolin D, Petrucci MT, Ribatti D, Dammacco F (2003) Endothelial cells in the bone marrow of patients with multiple myeloma. Blood 102:3340–3348

    Article  PubMed  CAS  Google Scholar 

  59. Nakayama T, Yao L, Tosato G (2004) Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest 114:1317–1325

    PubMed  CAS  Google Scholar 

  60. Terpos E, Anargyrou K, Katodritou E, Kastritis E, Papatheodorou A, Christoulas D, Pouli A, Michalis E, Delimpasi S, Gkotzamanidou M, Nikitas N, Koumoustiotis V, Margaritis D, Tsionos K, Stefanoudaki E, Meletis J, Zervas K, Dimopoulos MA, Greek Myeloma Study Group, Greece (2011) Circulating angiopoietin-1 to angiopoietin-2 ratio is an independent prognostic factor for survival in newly diagnosed patients with multiple myeloma who received therapy with novel antimyeloma agents. Int J Cancer. doi:10.1002/ijc.26062

  61. Agnelli L, Bicciato S, Mattioli M, Fabris S, Intini D, Verdelli D, Baldini L, Morabito F, Callea V, Lombardi L, Neri A (2005) Molecular classification of multiple myeloma: a distinct transcriptional profile characterizes patients expressing CCND1 and negative for 14q32 translocations. J Clin Oncol 23:7296–7306

    Article  PubMed  CAS  Google Scholar 

  62. Plank MJ, Sleeman BD, Jones PF (2004) The role of the angiopoietins in tumour angiogenesis. Growth Factors 22:1–11

    Article  PubMed  CAS  Google Scholar 

  63. Kessenbrock K, Plaks V, Werb Z (2010) Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67

    Article  PubMed  CAS  Google Scholar 

  64. Rundhaug JE (2005) Matrix metalloproteinases and angiogenesis. J Cell Mol Med 9:267–285

    Article  PubMed  CAS  Google Scholar 

  65. Van Valckenborgh E, Bakkus M, Munaut C, Noël A, St Pierre Y, Asosingh K, Van Riet I, Van Camp B, Vanderkerken K (2002) Upregulation of matrix metalloproteinase-9 in murine 5 T33 multiple myeloma cells by interaction with bone marrow endothelial cells. Int J Cancer 101:512–518

    Article  PubMed  CAS  Google Scholar 

  66. Van Valckenborgh E, Croucher PI, De Raeve H, Carron C, De Leenheer E, Blacher S, Devy L, Noël A, De Bruyne E, Asosingh K, Van Riet I, Van Camp B, Vanderkerken K (2004) Multifunctional role of matrix metalloproteinases in multiple myeloma: a study in the 5T2MM mouse model. Am J Pathol 165:869–878

    Article  PubMed  Google Scholar 

  67. Barillé S, Akhoundi C, Collette M, Mellerin MP, Rapp MJ, Harousseau JL, Bataille R, Amiot M (1997) Metalloproteinases in multiple myeloma: production of matrix metalloproteinase-9 (MMP-9), activation of proMMP-2, and induction of MMP-1 by myeloma cells. Blood 90:1649–1655

    PubMed  Google Scholar 

  68. Barillé S, Bataille R, Rapp MJ, Harousseau JL, Amiot M (1999) Production of metalloproteinase-7 (matrilysin) by human myeloma cells and its potential involvement in metalloproteinase-2 activation. J Immunol 163:5723–5728

    PubMed  Google Scholar 

  69. Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF, Giachelli CM (1998) NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J Cell Biol 141:1083–1093

    Article  PubMed  CAS  Google Scholar 

  70. Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, Detmar M (1996) Stimulation of endothelial cell migration by vascular permeability factor/vascular endothelial growth factor through cooperative mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J Pathol 149:293–305

    PubMed  CAS  Google Scholar 

  71. Liaw L, Almeida M, Hart CE, Schwartz SM, Giachelli CM (1994) Osteopontin promotes vascular cell adhesion and spreading and is chemotactic for smooth muscle cells in vitro. Circ Res 74:214–224

    PubMed  CAS  Google Scholar 

  72. Takahashi F, Akutagawa S, Fukumoto H, Tsukiyama S, Ohe Y, Takahashi K, Fukuchi Y, Saijo N, Nishio K (2002) Osteopontin induces angiogenesis of murine neuroblastoma cells in mice. Int J Cancer 98:707–712

    Article  PubMed  CAS  Google Scholar 

  73. Hirama M, Takahashi F, Takahashi K, Akutagawa S, Shimizu K, Soma S, Shimanuki Y, Nishio K, Fukuchi Y (2003) Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett 198:107–117

    Article  PubMed  CAS  Google Scholar 

  74. Colla S, Morandi F, Lazzaretti M, Rizzato R, Lunghi P, Bonomini S, Mancini C, Pedrazzoni M, Crugnola M, Rizzoli V, Giuliani N (2005) Human myeloma cells express the bone regulating gene Runx2/Cbfa1 and produce osteopontin that is involved in angiogenesis in multiple myeloma patients. Leukemia 19:2166–2176

    Article  PubMed  CAS  Google Scholar 

  75. Philip S, Bulbule A, Kundu GC (2001) Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells. J Biol Chem 276:44926–44935

    Article  PubMed  CAS  Google Scholar 

  76. Abe M, Hiura K, Wilde J, Shioyasono A, Moriyama K, Hashimoto T, Kido S, Oshima T, Shibata H, Ozaki S, Inoue D, Matsumoto T (2004) Osteoclasts enhance myeloma cell growth and survival via cell-cell contact: a vicious cycle between bone destruction and myeloma expansion. Blood 104:2484–2491

    Article  PubMed  CAS  Google Scholar 

  77. Cackowski FC, Anderson JL, Patrene KD, Choksi RJ, Shapiro SD, Windle JJ, Blair HC, Roodman GD (2010) Osteoclasts are important for bone angiogenesis. Blood 115:140–149

    Article  PubMed  CAS  Google Scholar 

  78. Galimi F, Brizzi MF, Comoglio PM (1993) The hepatocyte growth factor and its receptor. Stem Cells 11(Suppl 2):22–30

    PubMed  CAS  Google Scholar 

  79. Rosen EM, Lamszus K, Laterra J, Polverini PJ, Rubin JS, Goldberg ID (1997) HGF/SF in angiogenesis. Ciba Found Symp 212:215–226

    PubMed  CAS  Google Scholar 

  80. Gao CF, Vande Woude GF (2005) HGF/SF-Met signaling in tumor progression. Cell Res 15:49–51

    Article  PubMed  Google Scholar 

  81. Lesko E, Majka M (2008) The biological role of HGF-MET axis in tumor growth and development of metastasis. Front Biosci 13:1271–1278

    Article  PubMed  CAS  Google Scholar 

  82. Borset M, Hjorth-Hansen H, Seide C, Sundan A, Waage A (1996) Hepatocyte growth factor and its receptor c-met in multiple myeloma. Blood 88:3998–4004

    PubMed  CAS  Google Scholar 

  83. Vande Broek I, Vanderkerken K, Van Camp B, Van Riet I (2008) Extravasation and homing mechanisms in multiple myeloma. Clin Exp Metastasis 25:325–334

    Article  PubMed  CAS  Google Scholar 

  84. Derksen PW, Keehnen RM, Evers LM, van Oers MH, Spaargaren M, Pals ST (2002) Cell surface proteoglycan syndecan-1 mediates hepatocyte growth factor binding and promotes Met signaling in multiple myeloma. Blood 99:1405–1410

    Article  PubMed  CAS  Google Scholar 

  85. Seidel C, Børset M, Hjertner O, Cao D, Abildgaard N, Hjorth-Hansen H, Sanderson RD, Waage A, Sundan A (2000) High levels of soluble syndecan-1 in myeloma-derived bone marrow: modulation of hepatocyte growth factor activity. Blood 96:3139–3146

    PubMed  CAS  Google Scholar 

  86. Mahtouk K, Hose D, Raynaud P, Hundemer M, Jourdan M, Jourdan E, Pantesco V, Baudard M, De Vos J, Larroque M, Moehler T, Rossi JF, Rème T, Goldschmidt H, Klein B (2007) Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood 109:4914–4923

    Article  PubMed  CAS  Google Scholar 

  87. Khotskaya YB, Dai Y, Ritchie JP, MacLeod V, Yang Y, Zinn K, Sanderson RD (2009) Syndecan-1 is required for robust growth, vascularization, and metastasis of myeloma tumors in vivo. J Biol Chem 284:26085–26095

    Article  PubMed  CAS  Google Scholar 

  88. Yang Y, Macleod V, Miao HQ, Theus A, Zhan F, Shaughnessy JD Jr, Sawyer J, Li JP, Zcharia E, Vlodavsky I, Sanderson RD (2007) Heparanase enhances syndecan-1 shedding: a novel mechanism for stimulation of tumor growth and metastasis. J Biol Chem 282:13326–13333

    Article  PubMed  CAS  Google Scholar 

  89. Ramani VC, Yang Y, Ren Y, Nan L, Sanderson RD (2011) Heparanase Plays a Dual Role in Driving Hepatocyte Growth Factor (HGF) Signaling by Enhancing HGF Expression and Activity. J Biol Chem 286:6490–6499

    Article  PubMed  CAS  Google Scholar 

  90. Purushothaman A, Chen L, Yang Y, Sanderson RD (2008) Heparanase stimulation of protease expression implicates it as a master regulator of the aggressive tumor phenotype in myeloma. J Biol Chem 283:32628–32636

    Article  PubMed  CAS  Google Scholar 

  91. Purushothaman A, Uyama T, Kobayashi F, Yamada S, Sugahara K, Rapraeger AC, Sanderson RD (2010) Heparanase-enhanced shedding of syndecan-1 by myeloma cells promotes endothelial invasion and angiogenesis. Blood 115:2449–2457

    Article  PubMed  CAS  Google Scholar 

  92. Motro B, Itin A, Sachs L, Keshet E (1990) Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proc Natl Acad Sci USA 87:3092–3096

    Article  PubMed  CAS  Google Scholar 

  93. Belperio JA, Keane MP, Arenberg DA, Addison CL, Ehlert JE, Burdick MD, Strieter RM (2000) CXC chemokines in angiogenesis. J Leukoc Biol 68:1–8

    PubMed  CAS  Google Scholar 

  94. Kline M, Donovan K, Wellik L, Lust C, Jin W, Moon-Tasson L, Xiong Y, Witzig TE, Kumar S, Rajkumar SV, Lust JA (2007) Cytokine and chemokine profiles in multiple myeloma; significance of stromal interaction and correlation of IL-8 production with disease progression. Leuk Res 31:591–598

    Article  PubMed  CAS  Google Scholar 

  95. Colla S, Tagliaferri S, Morandi F, Lunghi P, Donofrio G, Martorana D, Mancini C, Lazzaretti M, Mazzera L, Ravanetti L, Bonomini S, Ferrari L, Miranda C, Ladetto M, Neri TM, Neri A, Greco A, Mangoni M, Bonati A, Rizzoli V, Giuliani N (2007) The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 110:4464–4475

    Article  PubMed  CAS  Google Scholar 

  96. Brat DJ, Bellail AC, Van Meir EG (2005) The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neuro Oncol 7:122–133

    Article  PubMed  CAS  Google Scholar 

  97. Yuan A, Chen JJ, Yao PL, Yang PC (2005) The role of interleukin-8 in cancer cells and microenvironment interaction. Front Biosci 10:853–865

    Article  PubMed  CAS  Google Scholar 

  98. Shapiro VS, Mollenauer MN, Weiss A (2001) Endogenous CD28 expressed on myeloma cells up-regulates interleukin-8 production: implications for multiple myeloma progression. Blood 98:187–193

    Article  PubMed  CAS  Google Scholar 

  99. Alexandrakis MG, Passam FJ, Ganotakis E, Dafnis E, Dambaki C, Konsolas J, Kyriakou DS, Stathopoulos E (2004) Bone marrow microvascular density and angiogenic growth factors in multiple myeloma. Clin Chem Lab Med 42:1122–1126

    Article  PubMed  CAS  Google Scholar 

  100. Cibeira MT, Rozman M, Segarra M, Lozano E, Rosiñol L, Cid MC, Filella X, Bladé J (2008) Bone marrow angiogenesis and angiogenic factors in multiple myeloma treated with novel agents. Cytokine 41:244–253

    Article  PubMed  CAS  Google Scholar 

  101. Kumar S, Witzig TE, Timm M, Haug J, Wellik L, Kimlinger TK, Greipp PR, Rajkumar SV (2004) Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression. Blood 104:1159–1165

    Article  PubMed  CAS  Google Scholar 

  102. Hose D, Moreaux J, Meissner T, Seckinger A, Goldschmidt H, Benner A, Mahtouk K, Hillengass J, Rème T, De Vos J, Hundemer M, Condomines M, Bertsch U, Rossi JF, Jauch A, Klein B, Möhler T (2009) Induction of angiogenesis by normal and malignant plasma cells. Blood 114:128–143

    Article  PubMed  CAS  Google Scholar 

  103. Munshi NC, Hideshima T, Carrasco D, Shammas M, Auclair D, Davies F, Mitsiades N, Mitsiades C, Kim RS, Li C, Rajkumar SV, Fonseca R, Bergsagel L, Chauhan D, Anderson KC (2004) Identification of genes modulated in multiple myeloma using genetically identical twin samples. Blood 103:1799–1806

    Article  PubMed  CAS  Google Scholar 

  104. Brahimi-Horn MC, Chiche J, Pouysségur J (2007) Hypoxia and cancer. J Mol Med 85:1301–1307

    Article  PubMed  Google Scholar 

  105. Liao D, Johnson RS (2007) Hypoxia: a key regulator of angiogenesis in cancer. Cancer Metastasis Rev 26:281–290

    Article  PubMed  CAS  Google Scholar 

  106. Hickey MM, Simon MC (2006) Regulation of angiogenesis by hypoxia and hypoxia-inducible factors. Curr Top Dev Biol 76:217–257

    Article  PubMed  CAS  Google Scholar 

  107. Hirota K, Semenza GL (2006) ReguIation of angiogenesis by hypoxia-inducibIe factor 1. Crit Rev OncoI Hematol 59:15–26

    Article  Google Scholar 

  108. Lisy K, Peet DJ (2008) Turn me on: regulating HIF transcriptional activity. Cell Death Differ 15:642–649

    Article  PubMed  CAS  Google Scholar 

  109. Weidemann A, Johnson RS (2008) Biology of HIF-1α. Cell Death Differ 15:621–627

    Article  PubMed  CAS  Google Scholar 

  110. Rankin EB, Giaccia AJ (2008) The role of hypoxia-inducible factors in tumorigenesis. Cell Death Differ 15:678–685

    Article  PubMed  CAS  Google Scholar 

  111. Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59:5830–5835

    PubMed  CAS  Google Scholar 

  112. Colla S, Storti P, Donofrio G, Todoerti K, Bolzoni M, Lazzaretti M, Abeltino M, Ippolito L, Neri A, Ribatti D, Rizzoli V, Martella E, Giuliani N (2010) Low bone marrow oxygen tension and hypoxia-inducible factor-1α overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138(+) cells. Leukemia 24:1967–1970

    Article  PubMed  CAS  Google Scholar 

  113. Harrison JS, Rameshwar P, Chang V, Bandari P (2002) Oxygen saturation in the bone marrow of healthy volunteers. Blood 99:394

    Article  PubMed  CAS  Google Scholar 

  114. Asosingh K, De Raeve H, de Ridder M, Storme GA, Willems A, Van Riet I, Van Camp B, Vanderkerken K (2005) Role of the hypoxic bone marrow microenvironment in 5T2MM murine myeloma tumor progression. Haematologica 90:810–817

    PubMed  CAS  Google Scholar 

  115. Zhang J, Sattler M, Tonon G, Grabher C, Lababidi S, Zimmerhackl A, Raab MS, Vallet S, Zhou Y, Cartron MA, Hideshima T, Tai YT, Chauhan D, Anderson KC, Podar K (2009) Targeting angiogenesis via a c-Myc/hypoxia-inducible factor-1alpha-dependent pathway in multiple myeloma. Cancer Res 69(12):5082–5090

    Article  PubMed  CAS  Google Scholar 

  116. Storti P, Donofrio G, Colla S, Airoldi I, Bolzoni M, Agnelli L, Abeltino M, Todoerti K, Lazzaretti M, Mancini C, Ribatti D, Bonomini S, Franceschi V, Pistoia V, Lisignoli G, Pedrazzini A, Cavicchi O, Neri A, Rizzoli V, Giuliani N (2011) HOXB7 expression by myeloma cells regulates their pro-angiogenic properties in multiple myeloma patients. Leukemia 25:527–537

    Article  PubMed  CAS  Google Scholar 

  117. Garkavtsev I, Kozin SV, Chernova O, Xu L, Winkler F, Brown E, Barnett GH, Jain RK (2004) The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis. Nature 428:328–332

    Article  PubMed  CAS  Google Scholar 

  118. Gunduz M, Nagatsuka H, Demircan K, Gunduz E, Cengiz B, Ouchida M, Tsujigiwa H, Yamachika E, Fukushima K, Beder L, Hirohata S, Ninomiya Y, Nishizaki K, Shimizu K, Nagai N (2005) Frequent deletion and down-regulation of ING4, a candidate tumor suppressor gene at 12p13, in head and neck squamous cell carcinomas. Gene 356:109–117

    Article  PubMed  CAS  Google Scholar 

  119. Ozer A, Wu LC, Bruick RK (2005) The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci USA 102:7481–7486

    Article  PubMed  CAS  Google Scholar 

  120. Gorski DH, Walsh K (2000) The role of homeobox genes in vascular remodeling and angiogenesis. Circ Res 87:865–872

    PubMed  CAS  Google Scholar 

  121. Carè A, Felicetti F, Meccia E, Bottero L, Parenza M, Stoppacciaro A, Peschle C, Colombo MP (2001) HOXB7: a key factor for tumor-associated angiogenic switch. Cancer Res 61:6532–6539

    PubMed  Google Scholar 

  122. Caré A, Silvani A, Meccia E, Mattia G, Peschle C, Colombo MP (1998) Transduction of the SkBr3 breast carcinoma cell line with the HOXB7 gene induces bFGF expression, increases cell proliferation and reduces growth factor dependence. Oncogene 16:3285–3289

    Article  PubMed  Google Scholar 

  123. Caré A, Silvani A, Meccia E, Mattia G, Stoppacciaro A, Parmiani G, Peschle C, Colombo MP (1996) HOXB7 constitutively activates basic fibroblast growth factor in melanomas. Mol Cell Biol 16:4842–4851

    PubMed  Google Scholar 

  124. D’Amato RJ, Loughnan MS, Flynn E, Folkman J (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91:4082–4085

    Article  PubMed  Google Scholar 

  125. Anargyrou K, Dimopoulos MA, Sezer O, Terpos E (2008) Novel anti-myeloma agents and angiogenesis. Leuk Lymphoma 49:677–689

    Article  PubMed  CAS  Google Scholar 

  126. Vacca A, Scavelli C, Montefusco V, Di Pietro G, Neri A, Mattioli M, Bicciato S, Nico B, Ribatti D, Dammacco F, Corradini P (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23:5334–5346

    Article  PubMed  CAS  Google Scholar 

  127. Quach H, Ritchie D, Stewart AK, Neeson P, Harrison S, Smyth MJ, Prince HM (2010) Mechanism of action of immunomodulatory drugs (IMiDS) in multiple myeloma. Leukemia 24:22–32

    Article  PubMed  CAS  Google Scholar 

  128. Dredge K, Marriott JB, Macdonald CD, Man HW, Chen R, Muller GW, Stirling D, Dalgleish AG (2002) Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer 87:1166–1172

    Article  PubMed  CAS  Google Scholar 

  129. Dredge K, Horsfall R, Robinson SP, Zhang LH, Lu L, Tang Y, Shirley MA, Muller G, Schafer P, Stirling D, Dalgleish AG, Bartlett JB (2005) Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc Res 69(1–2):56–63

    Article  PubMed  CAS  Google Scholar 

  130. Yaccoby S, Johnson CL, Mahaffey SC, Wezeman MJ, Barlogie B, Epstein J (2002) Antimyeloma efficacy of thalidomide in the SCID-hu model. Blood 100:4162–4168

    Article  PubMed  CAS  Google Scholar 

  131. Lentzsch S, LeBlanc R, Podar K, Davies F, Lin B, Hideshima T, Catley L, Stirling DI, Anderson KC (2003) Immunomodulatory analogs of thalidomide inhibit growth of Hs Sultan cells and angiogenesis in vivo. Leukemia 17:41–44

    Article  PubMed  CAS  Google Scholar 

  132. Mileshkin L, Honemann D, Gambell P, Trivett M, Hayakawa Y, Smyth M, Beshay V, Ritchie D, Simmons P, Milner AD, Zeldis JB, Prince HM (2007) Patients with multiple myeloma treated with thalidomide: evaluation of clinical parameters, cytokines, angiogenic markers, mast cells and marrow CD57+ cytotoxic T cells as predictors of outcome. Haematologica 92:1075–1082

    Article  PubMed  CAS  Google Scholar 

  133. Drexler HC, Risau W, Konerding MA (2000) Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J 14:65–77

    PubMed  CAS  Google Scholar 

  134. Podar K, Shringarpure R, Tai YT, Simoncini M, Sattler M, Ishitsuka K, Richardson PG, Hideshima T, Chauhan D, Anderson KC (2004) Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res 64:7500–7506

    Article  PubMed  CAS  Google Scholar 

  135. LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N, Neuberg D, Goloubeva O, Pien CS, Adams J, Gupta D, Richardson PG, Munshi NC, Anderson KC (2002) Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62:4996–5000

    PubMed  CAS  Google Scholar 

  136. Politou M, Naresh K, Terpos E, Crawley D, Lampert I, Apperley JF, Rahemtulla A (2005) Anti-angiogenic effect of bortezomib in patients with multiple myeloma. Acta Haematol 114:170–173

    Article  PubMed  Google Scholar 

  137. Anargyrou K, Terpos E, Vassilakopoulos TP, Pouli A, Sachanas S, Tzenou T, Masouridis S, Christoulas D, Angelopoulou MK, Dimitriadou EM, Kalpadakis C, Tsionos K, Panayiotidis P, Dimopoulos MA, Pangalis GA, Kyrtsonis MC, Greek Myeloma Study Group (2008) Normalization of the serum angiopoietin-1 to angiopoietin-2 ratio reflects response in refractory/resistant multiple myeloma patients treated with bortezomib. Haematologica 93:451–454

    Article  PubMed  CAS  Google Scholar 

  138. Cook KM, Figg WD (2010) Angiogenesis inhibitors: current strategies and future prospects. CA Cancer J Clin 60:222–243

    Article  PubMed  Google Scholar 

  139. Ramakrishnan V, Timm M, Haug JL, Kimlinger TK, Wellik LE, Witzig TE, Rajkumar SV, Adjei AA, Kumar S (2010) Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 29:1190–1202

    Article  PubMed  CAS  Google Scholar 

  140. Podar K, Catley LP, Tai YT, Shringarpure R, Carvalho P, Hayashi T, Burger R, Schlossman RL, Richardson PG, Pandite LN, Kumar R, Hideshima T, Chauhan D, Anderson KC (2004) GW654652, the pan-inhibitor of VEGF receptors, blocks the growth and migration of multiple myeloma cells in the bone marrow microenvironment. Blood 103:3474–3479

    Article  PubMed  CAS  Google Scholar 

  141. Zangari M, Anaissie E, Stopeck A, Morimoto A, Tan N, Lancet J, Cooper M, Hannah A, Garcia-Manero G, Faderl S, Kantarjian H, Cherrington J, Albitar M, Giles FJ (2004) Phase II study of SU5416, a small molecule vascular endothelial growth factor tyrosine kinase receptor inhibitor, in patients with refractory multiple myeloma. Clin Cancer Res 10(1 Pt 1):88–95

    Article  PubMed  CAS  Google Scholar 

  142. Kovacs MJ, Reece DE, Marcellus D, Meyer RM, Mathews S, Dong RP, Eisenhauer E (2006) A phase II study of ZD6474 (Zactima, a selective inhibitor of VEGFR and EGFR tyrosine kinase in patients with relapsed multiple myeloma–NCIC CTG IND.145. Invest New Drugs 24:529–535

    PubMed  CAS  Google Scholar 

  143. Prince HM, Hönemann D, Spencer A, Rizzieri DA, Stadtmauer EA, Roberts AW, Bahlis N, Tricot G, Bell B, Demarini DJ, Benjamin Suttle A, Baker KL, Pandite LN (2009) Vascular endothelial growth factor inhibition is not an effective therapeutic strategy for relapsed or refractory multiple myeloma: a phase 2 study of pazopanib (GW786034). Blood 113:4819–4820

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Giuliani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giuliani, N., Storti, P., Bolzoni, M. et al. Angiogenesis and Multiple Myeloma. Cancer Microenvironment 4, 325–337 (2011). https://doi.org/10.1007/s12307-011-0072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-011-0072-9

Keywords

Navigation