Skip to main content
Log in

Molecular biology in prostate cancer

  • Educational Series
  • Blue Series
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Summary

Genes involved in cancer generation are usually tumor suppressors and oncogenes. Progressive genetic alterations in these genes are involved in the mechanisms of tumorigenesis. In prostate cancer, additionally several chromosomal loci that should harbor mutated genes have been proposed. Some genes have been found altered in prostate cancer, such as PTEN, TP53, AR, RNASEL (HPC1), ELAC2 (HPC2), CDKN2A and MSR1 and those can be natural targets for new strategies of treatment. Besides, gene therapy has been suggested to be suitable for prostate cancer treatment. This approach includesex vivo corrective therapy, suicide, and antisense therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smith JR, Freije D, Carpten JD, et al. Mayor susceptibility locus for prostate cancer on chromosome 1 suggested by a genome-wide search. Science. 1996;274: 1371–4.

    Article  PubMed  CAS  Google Scholar 

  2. Makridakis N, Ross RK, Pike MC, et al. Association of mis-sense substitution in SRD5A2 gene with prostate cancer in African-American and Hispanic men in Los Angeles, USA. Lancet. 1999;354:975–8.

    Article  PubMed  CAS  Google Scholar 

  3. Makridakis N, Ross RK, Pike MC, et al. A prevalent missense substitution that modulates activity of prostatic steroid 5alphareductase. Cancer Res. 1997;57:1020–2.

    PubMed  CAS  Google Scholar 

  4. Nam RK, Toi A, Vesprini D, et al. V89L polymorphism of type-2, 5-alpha reductase enzyme gene predicts prostate cancer presence and progression. Urology. 2001;57:199–204.

    Article  PubMed  CAS  Google Scholar 

  5. Elo JP, Visacorpi T. Molecular genetics of prostate cancer. Ann Med. 2001;33:130–41.

    PubMed  CAS  Google Scholar 

  6. Bookstein R. Tumor suppressor genes in prostate cancer. In: Chung LW, Isaacs WB, Simons JW, eds. Prostate cancer: biology, genetics, and the new therapeutics. Totowa: NJ; Humana Press; 2001. p. 61–93.

    Google Scholar 

  7. Alcaraz A, Barranco MA, Corral JM, et al. High grade prostate intraepithelial neoplasia shares cytogenetic alterations with invasive prostate cancer. The Prostate. 2001;47:29–35.

    Article  PubMed  CAS  Google Scholar 

  8. Brown JA, Alcaraz A, Takahashi S, Persons DL, Lieber MM, Jenkins RB. Chromosomal aneusomies detected by fluorescent in situ hibridization (FISH) analysis in clinically loclized prostate carcinoma. J Urol. 1994;152:1157–62.

    PubMed  CAS  Google Scholar 

  9. Alcaraz A, Takahashi S, Brown JA, et al. Jenkins. Trisomy 7 and aneuploidy are potential markers of poor prognosis in prostate cancer. Cancer Res. 1994;54: 3998–4002.

    PubMed  CAS  Google Scholar 

  10. Reiter RE, Sato I, Thomas G, et al. Coamplification of prostate stem cell antigen (PSCA) and MYC in locally advanced prostate cancer. Genes Chromosomes Cancer. 2000;27:95–103.

    Article  PubMed  CAS  Google Scholar 

  11. Porkka K, Saramaki O, Tanner M, Visakorpi T. Amplification and overexpression of Elongin C gene discovered in prostate cancer by cDNAmicroarrays. Lab Invest. 2002;82:629–57.

    Article  PubMed  CAS  Google Scholar 

  12. Saramaki O, Willi N, Bratt O, et al. Amplification of EIF5S3 gene is associated with advanced stage inpfustate cancer. Am J Pathol. 2001;159:2089–94.

    PubMed  CAS  Google Scholar 

  13. Dhanasekaran SM, Barrette TR, Ghosh D, et al. Delineation of prognostic biomarkers in prostate cancer. Nature. 2001;412: 822–6.

    Article  PubMed  CAS  Google Scholar 

  14. Jiang Z, Woda BA, Rock KL, et al. P504S: A new molecular marker for the detection of prostate carcinoma. Am J Surg Pathol. 2001;25:1397–404.

    Article  PubMed  CAS  Google Scholar 

  15. Rubin MA, Zhou M, Dhanasekaran SM, Varambally S, Barrete TR, Sanda MG. A-methylacyl coenzyme A racemase as a tissue biomarker for prostate cancer. JAMA. 2001;287:1662–7Q.

    Article  Google Scholar 

  16. Luo J, Zha S, Gage WR, et al. Alpha-methyl CoA racemase: a new molecular marker for prostate cancer. Cancer Res. 2002;62:2220–6.

    PubMed  CAS  Google Scholar 

  17. Carmichael MJ, Veltri RW, Partin AW, et al. Deoxyribonucleic acid ploidy analysis as a predictor of recurrence following radical prostatectomy for stage 12 disease. J Urol. 1995;153:1015–9.

    Article  PubMed  CAS  Google Scholar 

  18. Theodorescu D, Broder SR, Boyd JC. p53, Bcl-2 and retinoblastoma proteins as long-term prognostic markers in localized carcinoma of the prostate. J Urol. 1997;158:131–7.

    Article  PubMed  CAS  Google Scholar 

  19. Moul JW. Angiogenesis, p53, bcl-2 and Ki-67 in the progression of prostate cancer after radical prostatectomy. Eur Urol. 1999;35:399–407.

    Article  PubMed  CAS  Google Scholar 

  20. Khoo VS, Pollack A, Cowen D, et al. Relationship of Ki-67 labeling index to DNA-ploidy, S-phase fraction, and outcome in prostate cancer treated with radiotherapy. Prostate. 1999;41:166–72.

    Article  PubMed  CAS  Google Scholar 

  21. Stattin P, Damber JE, Karlberg L, et al. Celr proliferation assessed by Ki-67 immunoreactivity on formal in fixed tissues is a predictive factor for survival in prostate cancer. J Urol. 1997;157:219–22.

    Article  PubMed  CAS  Google Scholar 

  22. Richmond PJ, Karayiannakis AJ, Nagafuchi A, Kaisary AV, Pignatelli M. Aberrant E-cadherin and alpha-catenin expression in prostate cancer: correlation with patient survival. Cancer Res. 1997;57:3189–3.

    PubMed  CAS  Google Scholar 

  23. Umbas R, Isaacs WB, Bringuier PP, et al. Decreased E-cadherin expression is associated with poor prognosis in patients with prostate cancer. Cancer Res. 1994; 54:5929–3.

    Google Scholar 

  24. McMenamin ME, Soung P, Perera S, et al. Loss of PTEN expression in paraffin-embedded primary prostate cancer correlates with high Gleason score and advanced stage. Cancer Res. 1999;59:4291–6.

    PubMed  CAS  Google Scholar 

  25. Krasilnikov M, Adlet V, Fuchs SY, et al. Contribution of phosphatidylinositol 3-kinase to radiation resistance in human melanoma cells. Mol Carcinog. 1999;24: 64–9.

    Article  PubMed  CAS  Google Scholar 

  26. Scherr DS, Vaughan ED, Wei J, et al. BCL-2 and p53 express ion in clinically localized prostate cancer predicts response to external beam radiotherapy. J Urol. 1999;162:12–7.

    Article  PubMed  CAS  Google Scholar 

  27. Crawford ED, Eisenberger MA, McLeod DG, et al. A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med. 1989;17;321(7): 419–24. Erratum in: N Engl J Med. 1989; 321(20):1420.

    Article  Google Scholar 

  28. Harris JD, Gutiérrez AA, Hurst HC, Sikora K, Lemoine NR. Gene therapy for cancer using tumour-specific prodrug activation. Gene Ther. 1994;1(3):170–5.

    PubMed  CAS  Google Scholar 

  29. O'Keefe DS, Uchida A, Bacich DJ, et al. Prostate-specific suicide gene therapy using the prostate-specific membrane antigen promoter and enhancer. Prostate. 2000;45(2):149–57.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Martínez-Piñeiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cansino Alcaide, J.R., Martínez-Piñeiro, L. Molecular biology in prostate cancer. Clin Transl Oncol 8, 148–152 (2006). https://doi.org/10.1007/s12094-006-0004-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-006-0004-1

Keywords

Navigation