Skip to main content

Advertisement

Log in

Thyroid carcinoma after treatment for malignancies in childhood and adolescence: from diagnosis through follow-up

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

With improvements in the survival rates after childhood cancer, many clinicians have turned their attention to reporting on late effects, and how they might be prevented or treated. In childhood the thyroid gland is especially vulnerable to the carcinogenic action of ionizing radiation. This retrospective study focused on secondary thyroid cancers seen at our institution over more than 30 years (between 1980 and 2012) in patients treated for other malignancies in pediatric age. 36 patients were identified. In most cases, the primary cancer had been Hodgkin disease, and all the patients had been administered radiotherapy for their first malignancy. The secondary thyroid cancers were treated with total thyroidectomy in 27 cases (six with lymphadenectomy), and hemithyroidectomy in nine (one with lymphadenectomy). 12 Patients were also given radiometabolic therapy. All but two had TSH suppression therapy. The histological diagnoses were: 31 papillary and five follicular carcinomas. At 5 and 10 years, the OS was 100 and 95 %, respectively, and the PFS was 96 and 83 %. None of the patients died of their thyroid disease. Nodal involvement at onset was the only factor correlating with recurrence. Surgical sequelae only occurred in patients who underwent total thyroidectomy. Survival in these patients did not depend on the extent of surgery on the thyroid parenchyma. Our data confirm a good prognosis for secondary thyroid cancer, prompting us to encourage a minimalist approach to the treatment of these particular patients wherever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ron E, Modan B, Preston D, Alfandary E. Neoplasia following low-dose radiation in childhood. Radiat Res. 1989;120(3):516–31.

    Article  CAS  PubMed  Google Scholar 

  2. Boice JD Jr. Thyroid disease 60 years after Hiroshima and 20 years after Chernobyl. JAMA. 2006;295(9):1060–2.

    Article  CAS  PubMed  Google Scholar 

  3. Williams D. Twenty years’ experience with post-Chernobyl thyroid cancer. Best Pract Res Clin Endocrinol Metab. 2008;22(6):1061–73.

    Article  PubMed  Google Scholar 

  4. Ron E, Lubin JH, Shore RE, et al. Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 1995;141(3):259–77.

    Article  CAS  PubMed  Google Scholar 

  5. Black P, Straaten A, Gutjahr P. Secondary thyroid carcinoma after treatment for childhood cancer. Med Pediatr Oncol. 1998;31(2):91–5.

    Article  CAS  PubMed  Google Scholar 

  6. Garwicz S, Anderson H, Olsen JH, et al. Second malignant neoplasms after cancer in childhood and adolescence: a population-based case–control study in 5 Nordic countries. The Nordic Society for Pediatric Hematology and Oncology. The Association of the Nordic Cancer Registries. Int J Cancer. 2000;88(4):672–8.

    Article  CAS  PubMed  Google Scholar 

  7. Acharya S, Sarafoglou K, La Quaglia M, et al. Thyroid neoplasms after therapeutic radiation for malignancies during childhood or adolescence. Cancer. 2003;97(10):2397–403.

    Article  PubMed  Google Scholar 

  8. Rubino C, Adjadj E, Guérin S, et al. Long-term risk of second malignant neoplasms after neuroblastoma in childhood: role of treatment. Int J Cancer. 2003;107(5):791–6.

    Article  CAS  PubMed  Google Scholar 

  9. Metayer C, Lynch CF, Clarke EA, et al. Second cancers among long-term survivors of Hodgkin’s disease diagnosed in childhood and adolescence. J Clin Oncol. 2000;18(12):2435–43.

    CAS  PubMed  Google Scholar 

  10. Neglia JP, Friedman DL, Yasui Y, et al. Second malignant neoplasms in five-year survivors of childhood cancer: childhood Cancer Survivor Study. J Natl Cancer Inst. 2001;93(8):618–29.

    Article  CAS  PubMed  Google Scholar 

  11. Bhatia S, Yasui Y, Robison LL, et al. High risk of subsequent neoplasms continues with extended follow-up of childhood Hodgkin’s disease: report from the Late Effects Study Group. J Clin Oncol. 2003;21(23):4386–94.

    Article  PubMed  Google Scholar 

  12. Bhatti P, Veiga LH, Ronckers CM, et al. Risk of second primary thyroid cancer after radiotherapy for a childhood cancer in a large cohort study: an update from the Childhood Cancer Survivor Study. Radiat Res. 2010;174(6):741–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Massimino M, Gandola L, Mattavelli F, et al. Radiation-induced thyroid changes: a retrospective and a prospective view. Eur J Cancer. 2009;45(14):2546–51.

    Article  PubMed  Google Scholar 

  14. Sobin LH, Wittekind Ch, editors. UICC TNM classification of malignant tumors. 5th ed. New York: Wiley; 1997.

    Google Scholar 

  15. Massimino M, Collini P, Leite SF, et al. Conservative surgical approach for thyroid and lymph node involvement in papillary thyroid carcinoma of childhood and adolescence. Pediatr Blood Cancer. 2006;46(3):307–13.

    Article  PubMed  Google Scholar 

  16. Cox R. Regression models and life tables. J R Stat Soc. 1972;34:187–202.

    Google Scholar 

  17. Kaplan EL, Meier P. Non-parametric estimation from incomplete observation. J Am Stat Assoc. 1958;53:457–81.

    Article  Google Scholar 

  18. Veiga LH, Bhatti P, Ronckers CM, et al. Chemotherapy and thyroid cancer risk: a report from the Childhood Cancer Survivor Study. Cancer Epidemiol Biomarkers Prev. 2012;21(1):92–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Tucker MA, Jones PH, Boice JD Jr, et al. Therapeutic radiation at a young age is linked to secondary thyroid cancer. The Late Effects Study Group. Cancer Res. 1991;51(11):2885–8.

    CAS  PubMed  Google Scholar 

  20. Sigurdson AJ, Ronckers CM, Mertens AC, et al. Primary thyroid cancer after a first tumour in childhood (the Childhood Cancer Survivor Study): a nested case–control study. Lancet. 2005;365(9476):2014–23.

    Article  PubMed  Google Scholar 

  21. Hatipoglu BA, Gierlowski T, Shore-Freedman E, Recant W, Schneider AB. Fine-needle aspiration of thyroid nodules in radiation-exposed patients. Thyroid. 2000;10(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  22. Sassolas G, Hafdi-Nejjari Z, Casagranda L, et al. Thyroid cancers in children, adolescents, and young adults with and without a history of childhood exposure to therapeutic radiation for other cancers. Thyroid. 2013;23(7):805–10.

    Article  PubMed  Google Scholar 

  23. Lee SL. Complications of radioactive iodine treatment of thyroid carcinoma. J Natl Compr Canc Netw. 2010;8(11):1277–86 Review.

    PubMed  Google Scholar 

  24. Wada N, Suganuma N, Nakayama H, et al. Microscopic regional lymph node status in papillary thyroid carcinoma with and without lymphadenopathy and its relation to outcomes. Langenbecks Arch Surg. 2007;392(4):417–22.

    Article  PubMed  Google Scholar 

  25. Wada N, Sugino K, Mimura T, et al. Treatment strategy of papillary thyroid carcinoma in children and adolescents: clinical significance of the initial nodal manifestation. Ann Surg Oncol. 2009;16(12):3442–9.

    Article  PubMed  Google Scholar 

  26. Newman KD, Black T, Heller G, et al. Differentiated thyroid cancer: determinants of disease progression in patients <21 years of age at diagnosis: a report from the Surgical Discipline Committee of the Children’s Cancer Group. Ann Surg. 1998;227(4):533–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ji QH, Zhang L, Zhu YX, Huang CP. Long-term impact of initial surgical and medical therapy on young patients with papillary thyroid cancer and bilateral cervical metastases. Chin Med J (Engl). 2008;121(1):63–6.

    Google Scholar 

  28. Scholz S, Smith JR, Chaignaud B, et al. Thyroid surgery at Children’s Hospital Boston: a 35 year single-institution experience. J Pediatr Surg. 2011;46(3):437–42.

    Article  PubMed  Google Scholar 

  29. Armstrong GT, Liu W, Leisenring W, et al. Occurrence of multiple subsequent neoplasms in long-term survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2011;29(22):3056–64.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the “Associazione Bianca Garavaglia, per l’aiuto e il sostegno nel campo dei tumori infantili”, Via C. Cattaneo, 8–21052 Busto Arsizio (VA).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Giorgia Podda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podda, M.G., Terenziani, M., Gandola, L. et al. Thyroid carcinoma after treatment for malignancies in childhood and adolescence: from diagnosis through follow-up. Med Oncol 31, 121 (2014). https://doi.org/10.1007/s12032-014-0121-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0121-6

Keywords

Navigation