Skip to main content

Advertisement

Log in

Characterization of the Functional and Growth Properties of Cell Lines Established from Ileal and Rectal Carcinoid Tumors

  • Basic Research
  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Carcinoids of the intestine are the most common gastrointestinal carcinoid tumors. Therapeutic options to treat patients with these tumors are limited. There are very few ileal carcinoid cell lines available for in vitro studies to analyze new drugs that could be effective in treating patients with metastatic tumors. A replication defective recombinant adenovirus with an SV40 early T-antigen insert was used to infect two intestinal carcinoid tumors to create carcinoid cell lines. The cell lines were studied by cell culture, reverse transcription polymerase chain reaction, Western blotting, and immunohistochemistry. Both cell lines expressed SV40 large T antigen and receptors for TGFβ1, TGFβ2, EGFR, and somatostatin receptors. Treatment with TGFβ1 led to growth inhibition and increased apoptosis in the cultured cells. Octreotide inhibited cell growth of both cell lines while stimulating apoptosis. Treatment of the HC45 cells with gefitinib also inhibited cell growth in a concentration-dependent manner. TGFβ treatment stimulated chromogranin A expression while expression of two other granins, chromogranin B and 7B2, did not change significantly. RNA profiling of cells treated with TGFβ1 showed increased expression of vitamin D3 receptor. This finding was validated by real-time quantitative polymerase chain reaction, Western blotting, and immunohistochemistry. These results indicate that these carcinoid cell lines can be used to study the proliferative and apoptotic mechanisms involved in intestinal carcinoid tumor growth regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Oberg K. Carcinoid tumors: molecular genetics, tumor biology, and update of diagnosis and treatment. Curr Opin Oncol 14:38–45, 2002.

    Article  CAS  PubMed  Google Scholar 

  2. Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology 128:1717–51, 2005.

    Article  PubMed  Google Scholar 

  3. Rorstad O. Prognostic indicators for carcinoid neuroendocrine tumors of the gastrointestinal tract. J Surg Oncol 89:151–60, 2005.

    Article  PubMed  Google Scholar 

  4. Evers BM, Townsend CM Jr, Upp JR, Allen E, Hurlbut SC, Kim SW, et al. Establishment and characterization of a human carcinoid in nude mice and effect of various agents on tumor growth. Gastroenterology 101:303–11, 1991.

    CAS  PubMed  Google Scholar 

  5. Pfranger R, Wirnsberger G, Niederle B, Behmel A, Rinner I, Mandl A, et al. Establishment of a continuous cell line from a human carcinoid of the small intestine (KRJ-1): characterization and effects of a 5-azacytidine on proliferation. Int J Oncol 8:513–20, 1996.

    Google Scholar 

  6. Takahashi Y, Onda M, Tanaka N, Seya T. Establishment and characterization of two new rectal neuroendocrine cell carcinoma cell lines. Digestion 62:262–70, 2000.

    Article  CAS  PubMed  Google Scholar 

  7. Ahlund L, Nilsson O, Kling-Petersen T, Wigander A, Theodorsson E, Dahlstrom A, et al. Serotonin-producing carcinoid tumour cells in long-term culture. Studies on serotonin release and morphological features. Acta Oncol 28:341–6, 1989.

    Article  CAS  PubMed  Google Scholar 

  8. Modlin IM, Kidd M, Pfragner R, Eick GN, Champaneria MC. The functional characterization of normal and neoplastic human enterochromaffin cells. J Clin Endocrinol Metab 91:2340–8, 2006.

    Article  CAS  PubMed  Google Scholar 

  9. Galli G, Zonefrati R, Gozzini A, Mavilia C, Martineti V, Tognarini I, et al. Characterization of the functional and growth properties of long-term cell cultures established from a human somatostatinoma. Endocr Relat Cancer 13:79–93, 2006.

    Article  CAS  PubMed  Google Scholar 

  10. Kolby L, Wangberg B, Ahlman H, Tisell LE, Fjalling M, Forssell-Aronsson E, et al. Somatostatin receptor subtypes, octreotide scintigraphy, and clinical response to octreotide treatment in patients with neuroendocrine tumors. World J Surg 22:679–83, 1998.

    Article  CAS  PubMed  Google Scholar 

  11. Kolby L, Bernhardt P, Ahlman H, Wangberg B, Johanson V, Wigander A, et al. A transplantable human carcinoid as model for somatostatin receptor-mediated and amine transporter-mediated radionuclide uptake. Am J Pathol 158:745–55, 2001.

    CAS  PubMed  Google Scholar 

  12. Kolby L, Bernhardt P, Johanson V, Schmitt A, Ahlman H, Forssell-Aronsson E, et al. Successful receptor-mediated radiation therapy of xenografted human midgut carcinoid tumour. Br J Cancer 93:1144–51, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Anthony LB, Martin W, Delbeke D, Sandler M. Somatostatin receptor imaging: predictive and prognostic considerations. Digestion 57 Suppl 1:50–3, 1996.

    Article  CAS  PubMed  Google Scholar 

  14. Janson ET, Gobl A, Kalkner KM, Oberg K. A comparison between the efficacy of somatostatin receptor scintigraphy and that of in situ hybridization for somatostatin receptor subtype 2 messenger RNA to predict therapeutic outcome in carcinoid patients. Cancer Res 56:2561–5, 1996.

    CAS  PubMed  Google Scholar 

  15. Hopfner M, Sutter AP, Gerst B, Zeitz M, Scherubl H. A novel approach in the treatment of neuroendocrine gastrointestinal tumours. Targeting the epidermal growth factor receptor by gefitinib (ZD1839). Br J Cancer 89:1766–75, 2003.

    Article  CAS  PubMed  Google Scholar 

  16. Nilsson O, Wangberg B, McRae A, Dahlstrom A, Ahlman H. Growth factors and carcinoid tumours. Acta Oncol 32:115–24, 1993.

    Article  CAS  PubMed  Google Scholar 

  17. Oberg K. Expression of growth factors and their receptors in neuroendocrine gut and pancreatic tumors, and prognostic factors for survival. Ann N Y Acad Sci 733:46–55, 2005.

    Article  Google Scholar 

  18. Papouchado B, Erickson LA, Rohlinger AL, Hobday TJ, Erlichman C, Ames MM, et al. Epidermal growth factor receptor and activated epidermal growth factor receptor expression in gastrointestinal carcinoids and pancreatic endocrine carcinomas. Mod Path 18:1329–35, 2005.

    Article  CAS  Google Scholar 

  19. Grotzinger C. Tumour biology of gastroenteropancreatic neuroendocrine tumours. Neuroendocrinology 80 Suppl 1:8–11, 2004.

    Article  PubMed  CAS  Google Scholar 

  20. Yao JC, Zhang JX, Rashid A, Yeung SC, Szklaruk J, Hess K, et al. Clinical and in vitro studies of imatinib in advanced carcinoid tumors. Clin Cancer Res 13:234–40, 2007.

    Article  CAS  PubMed  Google Scholar 

  21. Chaudhry A, Papanicolaou V, Oberg K, Heldin CH, Funa K. Expression of platelet-derived growth factor and its receptors in neuroendocrine tumors of the digestive system. Cancer Res 52:1006–12, 1992.

    CAS  PubMed  Google Scholar 

  22. Jin L, Kulig EJ, Qian X, Scheithauer BW, Eberhardt NL, Lloyd RV. A human pituitary adenoma cell line proliferates and maintains some differentiated functions following expression of Sv40 large T-antigen. Endocr Pathol 9:169–84, 1998.

    Article  CAS  Google Scholar 

  23. Van Doren K, Gluzman Y. Efficient transformation of human fibroblasts by adenovirus-simian virus 40 recombinants. Mol Cell Biol 4:1653–6, 1984.

    PubMed  Google Scholar 

  24. Ruebel KH, Leontovich AA, Jin L, Stilling GA, Zhang H, Qian X, et al. Patterns of gene expression in pituitary carcinomas and adenomas analyzed by high-density oligonucleotide arrays, reverse transcriptase-quantitative PCR, and protein expression. Endocrine 29:435–44, 2006.

    Article  CAS  PubMed  Google Scholar 

  25. Ruebel KH, Jin L, Qian X, Scheithauer BW, Kovacs K, Nakamura N, et al. Effects of DNA methylation on galectin-3 expression in pituitary tumors. Cancer Res 65:1136–40, 2005.

    Article  CAS  PubMed  Google Scholar 

  26. Moghal N, Sternberg PW. Multiple positive and negative regulators of signaling by the EGF-receptor. Curr Opin Cell Biol 11:190–6, 1999.

    Article  CAS  PubMed  Google Scholar 

  27. Janmaat ML, Kruyt FAE, Rodriguez JA, Giaccone G. Inhibition of the epidermal growth factor receptor induces apoptosis in A431 cells but not in non-small-cell lung cancer cell lines. Proc Am Assoc Cancer Res 43:A3901, 2002.

    Google Scholar 

  28. Hobday TJ, Mahoney M, Erlichman C, Lloyd R, Kim G, Mulkerin D, et al. Preliminary results of a phase II trial of gefitinib in progressive metastatic neuroendocrine tumors (NET); a phase II consortium (P2C) study (Abstract 4083). J Clin Oncol 23 16S part 1:328s, 2005.

  29. Taupenot L, Harper KL, O’Connor DT. The chromogranin–secretogranin family. N Engl J Med 348:1134–49, 2003.

    Article  CAS  PubMed  Google Scholar 

  30. Feldman SA, Eiden LE. The chromogranins: their roles in secretion from neuroendocrine cells and as markers for neuroendocrine neoplasia. Endocr Pathol 14:3–23, 2003.

    Article  CAS  PubMed  Google Scholar 

  31. Kim T, Tao-Cheng JH, Eiden LE, Loh YP. Chromogranin A, an "on/off" switch controlling dense-core secretory granule biogenesis. Cell 106:499–509, 2001.

    Article  CAS  PubMed  Google Scholar 

  32. Huh YH, Jeon SH, Yoo SH. Chromogranin B-induced secretory granule biogenesis: comparison with the similar role of chromogranin A. J Biol Chem 278:40581–9, 2003.

    Article  CAS  PubMed  Google Scholar 

  33. Stilling GA, Bayliss JM, Jin L, Zhang H, Lloyd RV. Chromogranin A transcription and gene expression in Folliculostellate (TtT/GF) cells inhibit cell growth. Endocr Pathol 16:173–86, 2005.

    Article  CAS  PubMed  Google Scholar 

  34. Inomoto C, Umemura S, Egashira N, Minematsu T, Takekoshi S, Itoh Y, et al. Granulogenesis in non-neuroendocrine COS-7 cell induced by EGFP-tagged chromogranin a gene transfection: identical and distinct distribution of CgA and EGFP. J Histochem Cytochem 55:487–93, 2007.

    Article  CAS  PubMed  Google Scholar 

  35. Nakagawa K, Kawaura A, Kato S, Takeda E, Okano T. Metastatic growth of lung cancer cells is extremely reduced in Vitamin D receptor knockout mice. J Steroid Biochem Mol Biol 89–90:545–7, 2004.

    Article  PubMed  CAS  Google Scholar 

  36. Guzey M, Luo J, Getzenberg RH. Vitamin D3 modulated gene expression patterns in human primary normal and cancer prostate cells. J Cell Biochem 93:271–85, 2004.

    Article  CAS  PubMed  Google Scholar 

  37. Hussaini IM, Trotter C, Zhao Y, Abdel-Fattah R, Amos S, Xiao A, et al. Matrix metalloproteinase-9 is differentially expressed in nonfunctioning invasive and noninvasive pituitary adenomas and increases invasion in human pituitary adenoma cell line. Am J Pathol 170:356–65, 2007.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant from Dr. and Mrs. Raymond R. and Beverly Sackler. The authors thank AstraZeneca, Great Britain for providing gefitinib and Dr. J.C. Thompson, University of Texas Medical Branch, Galveston, Texas for BON cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stilling, G.A., Zhang, H., Ruebel, K.H. et al. Characterization of the Functional and Growth Properties of Cell Lines Established from Ileal and Rectal Carcinoid Tumors. Endocr Pathol 18, 223–232 (2007). https://doi.org/10.1007/s12022-007-9001-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-007-9001-3

Keywords

Navigation