Skip to main content

Advertisement

Log in

Combination of Radiotherapy and Targeted Agents in Brain Metastasis: An Update

  • Neuro-oncology (R Soffietti, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

The combination of radiation therapy and targeted agents (molecular inhibitors or immunotherapy) represents an opportunity to improve the outcomes of patients with brain metastases. The combination of whole-brain radiation therapy (WBRT) with targeted agents takes advantage of radiosensitization, while the combination with stereotactic radiosurgery (SRS) may allow one to substitute an effective systemic agent for adjuvant WBRT, the historical standard of care. This strategy may in turn allow the promotion of secondary prevention paradigms with possibly less cognitive toxicity. At present, the combination of targeted therapy with SRS rather than with WBRT is the more viable option although both avenues will likely have a role in the future management of brain metastases. Patients should be encouraged to enter clinical trials since the off-study use of these combinations will delay the advancement of the field. Caution is advised in the combination of radiation and targeted agents as unexpected toxicities can occur. Clinicians should avail themselves of clinical trials in order to offer patients these promising options and to move the field forward. In the absence of a clinical trial, we recommend the combination of SRS with targeted agents and deferred WBRT. Small, asymptomatic brain metastases may be best managed with single-modality targeted agents with deferred radiation therapy, preferably on a clinical trial. Advances in targeted therapies combined with radiation therapy will most likely improve local control and hopefully the quality of life and survival of patients with brain metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Nayak L, Lee EQ, Wen PY. Epidemiology of brain metastases. Curr Oncol Rep. 2012;14:48–54.

    Article  PubMed  Google Scholar 

  2. Biswas G, Bhagwat R, Khurana R, Menon H, Prasad N, Parikh PM. Brain metastasis—evidence based management. J Cancer Res Ther. 2006;2:5–13.

    Article  CAS  PubMed  Google Scholar 

  3. Sundermeyer ML, Meropol NJ, Rogatko A, Wang H, Cohen SJ. Changing patterns of bone and brain metastases in patients with colorectal cancer. Clin Colorectal Cancer. 2005;5:108–13.

    Article  PubMed  Google Scholar 

  4. Searle EJ, Illidge TM, Stratford IJ. Emerging opportunities for the combination of molecularly targeted drugs with radiotherapy. Clin Oncol (R Coll Radiol). 2014;26:266–76. This paper provides a broad summary of clinical trials over the preceding 5 years that combine targeted drugs and radiotherapy across many areas of oncology.

    Article  CAS  Google Scholar 

  5. Talmadge JE. Development of immunotherapeutic strategies for the treatment of malignant neoplasms. Biotherapy. 1992;4:215–36.

    Article  CAS  PubMed  Google Scholar 

  6. Kimple RJ. Strategizing the clone wars: pharmacological control of cellular sensitivity to radiation. Mol Interv. 2010;10:341–53.

    Article  PubMed  Google Scholar 

  7. Gondi V, Pugh SL, Tome WA, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32:3810–6.

    Article  Google Scholar 

  8. Kazda T, Jancalek R, Pospisil P, et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol (Lond Engl). 2014;9:139.

    Article  Google Scholar 

  9. Moraes FY, Taunk NK, Marta GN, Suh JH, Yamada Y. The rationale for targeted therapies and stereotactic radiosurgery in the treatment of brain metastases. Oncologist. 2016;21:244–51. This review provides an overview of strategies that combine targeted therapies and stereotactic radiosurgery.

    Article  PubMed  Google Scholar 

  10. Chinnaiyan P, Huang S, Vallabhaneni G, et al. Mechanisms of enhanced radiation response following epidermal growth factor receptor signaling inhibition by erlotinib (Tarceva). Cancer Res. 2005;65:3328–35.

    CAS  PubMed  Google Scholar 

  11. Postow MA, Callahan MK, Barker CA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bloy N, Pol J, Manic G, et al. Trial watch: radioimmunotherapy for oncological indications. Oncoimmunology. 2014;3:e954929. This manuscript is a comprehensive and extensively referenced overview of immunotherapy combined with radiation therapy which is updated every few years.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Demaria S, Bhardwaj N, McBride WH, Formenti SC. Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys. 2005;63:655–66.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gronberg BH, Ciuleanu T, Flotten O, et al. A placebo-controlled, randomized phase II study of maintenance enzastaurin following whole brain radiation therapy in the treatment of brain metastases from lung cancer. Lung Cancer. 2012;78:63–69.

  15. Niravath P, Tham YL, Wang T, et al. A phase II trial of capecitabine concomitantly with whole-brain radiotherapy followed by capecitabine and sunitinib for brain metastases from breast cancer. Oncologist.  2015;20:13.

  16. Barnholtz-Sloan JS, Sloan AE, Davis FG, Vigneau FD, Lai P, Sawaya RE. Incidence proportions of brain metastases in patients diagnosed (1973 to 2001) in the Metropolitan Detroit Cancer Surveillance System. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:2865–72.

    Article  Google Scholar 

  17. Neal JW. The SATURN trial: the value of maintenance erlotinib in patients with non-small-cell lung cancer. Future Oncol (Lond Engl). 2010;6:1827–32.

    Article  CAS  Google Scholar 

  18. Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet. 2012;13:239–46.

    Article  CAS  PubMed  Google Scholar 

  19. Ceresoli GL, Cappuzzo F, Gregorc V, Bartolini S, Crino L, Villa E. Gefitinib in patients with brain metastases from non-small-cell lung cancer: a prospective trial. Ann Oncol. 2004;15:1042–7.

    Article  CAS  PubMed  Google Scholar 

  20. Lind JS, Lagerwaard FJ, Smit EF, Senan S. Phase I study of concurrent whole brain radiotherapy and erlotinib for multiple brain metastases from non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009;74:1391–6.

    Article  CAS  PubMed  Google Scholar 

  21. Pesce GA, Klingbiel D, Ribi K, et al. Outcome, quality of life and cognitive function of patients with brain metastases from non-small cell lung cancer treated with whole brain radiotherapy combined with gefitinib or temozolomide. A randomised phase II trial of the Swiss Group for Clinical Cancer Research (SAKK 70/03). Eur J Cancer. 2012;48:377–84.

    Article  PubMed  Google Scholar 

  22. Welsh JW, Komaki R, Amini A, et al. Phase II trial of erlotinib plus concurrent whole-brain radiation therapy for patients with brain metastases from non-small-cell lung cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:895–902. This is a well-executed, moderately sized (40 patients) trial that suggested a survival advantage for patients with EGFR-mutated NSCLC compared to wild-type NSCLC.

    Article  CAS  Google Scholar 

  23. Wang F, Ning F, Liu C, et al. Comparison of gefitinib versus VMP in the combination with radiotherapy for multiple brain metastases from non-small cell lung cancer. Cell Biochem Biophys. 2015;71:1261–5.

    Article  CAS  PubMed  Google Scholar 

  24. Zhuang H, Yuan Z, Wang J, Zhao L, Pang Q, Wang P. Phase II study of whole brain radiotherapy with or without erlotinib in patients with multiple brain metastases from lung adenocarcinoma. Drug Des Dev Ther. 2013;7:1179–86.

    Article  Google Scholar 

  25. Sperduto PW, Wang M, Robins HI, et al. A phase 3 trial of whole brain radiation therapy and stereotactic radiosurgery alone versus WBRT and SRS with temozolomide or erlotinib for non-small cell lung cancer and 1 to 3 brain metastases: Radiation Therapy Oncology Group 0320. Int J Radiat Oncol Biol Phys. 2013;85:1312–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee SM, Lewanski CR, Counsell N, et al. Randomized trial of erlotinib plus whole-brain radiotherapy for NSCLC patients with multiple brain metastases. J Nat Cancer Inst 2014;106. Despite most patients having EGFR wild-type tumors, this is one of the few randomized trials that tests the paradigm of targeted therapy with radiotherapy for brain metastases.

  27. Fan Y, Huang Z, Fang L, et al. A phase II study of icotinib and whole-brain radiotherapy in Chinese patients with brain metastases from non-small cell lung cancer. Cancer Chemother Pharmacol. 2015;76:517–23. This small randomized trial suggested a survival benefit for patients with EGFR mutated vs wild-type tumors and also documented CSF levels of icotinib.

    Article  CAS  PubMed  Google Scholar 

  28. Tan CS, Cho BC, Soo RA. Next-generation epidermal growth factor receptor tyrosine kinase inhibitors in epidermal growth factor receptor -mutant non-small cell lung cancer. Lung Cancer (Amst Neth). 2016;93:59–68.

    Article  Google Scholar 

  29. Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27:4247–53.

    Article  CAS  Google Scholar 

  30. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  31. Shaw AT, Kim DW, Nakagawa K, et al. Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med. 2013;368:2385–94.

    Article  CAS  PubMed  Google Scholar 

  32. Costa DB, Shaw AT, Ou SH, et al. Clinical experience with crizotinib in patients with advanced ALK-rearranged non-small-cell lung cancer and brain metastases. J Clin Oncol Off J Am Soc Clin Oncol. 2015;33:1881–8.

    Article  CAS  Google Scholar 

  33. Lin NU, Bellon JR, Winer EP. CNS metastases in breast cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2004;22:3608–17.

    Article  Google Scholar 

  34. Stemmler HJ, Schmitt M, Willems A, Bernhard H, Harbeck N, Heinemann V. Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anti-Cancer Drugs. 2007;18:23–8.

    Article  CAS  PubMed  Google Scholar 

  35. Park YH, Park MJ, Ji SH, et al. Trastuzumab treatment improves brain metastasis outcomes through control and durable prolongation of systemic extracranial disease in HER2-overexpressing breast cancer patients. Br J Cancer. 2009;100:894–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin NU, Freedman RA, Ramakrishna N, et al. A phase I study of lapatinib with whole brain radiotherapy in patients with human epidermal growth factor receptor 2 (HER2)-positive breast cancer brain metastases. Breast Cancer Res Treat. 2013;142:405–14. Despite being a phase I trial, prolonged responses were observed with this combination.

    Article  CAS  PubMed  Google Scholar 

  37. Stadler WM, Figlin RA, McDermott DF, et al. Safety and efficacy results of the advanced renal cell carcinoma sorafenib expanded access program in North America. Cancer. 2010;116:1272–80.

    Article  CAS  PubMed  Google Scholar 

  38. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34.

    Article  CAS  PubMed  Google Scholar 

  39. Ratain MJ, Eisen T, Stadler WM, et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol Off J Am Soc Clin Oncol. 2006;24:2505–12.

    Article  CAS  Google Scholar 

  40. Bates JE, Youn P, Peterson CR, 3rd, et al. Radiotherapy for brain metastases from renal cell carcinoma in the targeted therapy era: the University of Rochester experience. Am J Clin Oncol 2015.

  41. Bafaloukos D, Gogas H. The treatment of brain metastases in melanoma patients. Cancer Treat Rev. 2004;30:515–20.

    Article  CAS  PubMed  Google Scholar 

  42. Jakob JA, Bassett Jr RL, Ng CS, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012;118:4014–23.

    Article  CAS  PubMed  Google Scholar 

  43. Soffietti R, Trevisan E, Ruda R. Targeted therapy in brain metastasis. Curr Opin Oncol. 2012;24:679–86.

    Article  CAS  PubMed  Google Scholar 

  44. Ascierto PA, Minor D, Ribas A, et al. Phase II trial (BREAK-2) of the BRAF inhibitor dabrafenib (GSK2118436) in patients with metastatic melanoma. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:3205–11.

    Article  CAS  Google Scholar 

  45. Falchook GS, Long GV, Kurzrock R, et al. Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial. Lancet (Lond Engl). 2012;379:1893–901.

    Article  CAS  Google Scholar 

  46. Dummer R, Goldinger SM, Turtschi CP, et al. Vemurafenib in patients with BRAF(V600) mutation-positive melanoma with symptomatic brain metastases: final results of an open-label pilot study. Eur J Cancer. 2014;50:611–21.

    Article  CAS  PubMed  Google Scholar 

  47. Long GV, Trefzer U, Davies MA, et al. Dabrafenib in patients with Val600Glu or Val600Lys BRAF-mutant melanoma metastatic to the brain (BREAK-MB): a multicentre, open-label, phase 2 trial. Lancet. 2012;13:1087–95.

    Article  CAS  PubMed  Google Scholar 

  48. Wolf A, Zia S, Verma R, et al. Impact on overall survival of the combination of BRAF inhibitors and stereotactic radiosurgery in patients with melanoma brain metastases. J Neuro-Oncol. 2016. This single institution experience that combined stereotactic radiosurgery and BRAF inhibitors suggested a survival benefit for patients with BRAF-mutated tumors who received BRAF inhibitors compared to BRAF wild-type tumors treated with radiation alone.

  49. Kefford R, Maio M, Arance A, et al. Vemurafenib in metastatic melanoma patients with brain metastases: an open-label, single-arm, phase 2, multi-center study. Philadelphia: Society for Melanoma Research Congress; 2013.

    Google Scholar 

  50. Satzger I, Degen A, Asper H, Kapp A, Hauschild A, Gutzmer R. Serious skin toxicity with the combination of BRAF inhibitors and radiotherapy. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31:e220–2. This report highlights the potential for increased toxicity when radiation and targeted therapies are combined.

    Article  Google Scholar 

  51. Boussemart L, Boivin C, Claveau J, et al. Vemurafenib and radiosensitization. JAMA Dermatol. 2013;149:855–7.

    Article  PubMed  Google Scholar 

  52. Wuthrick EJ, Kamrava M, Curran Jr WJ, et al. A phase 1b trial of the combination of the antiangiogenic agent sunitinib and radiation therapy for patients with primary and metastatic central nervous system malignancies. Cancer. 2011;117:5548–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahluwalia MS, Chao ST, Parsons MW, et al. Phase II trial of sunitinib as adjuvant therapy after stereotactic radiosurgery in patients with 1-3 newly diagnosed brain metastases. J Neuro-Oncol. 2015;124:485–91.

    Article  CAS  Google Scholar 

  54. Lao CD, Friedman J, Tsien CI, et al. Concurrent whole brain radiotherapy and bortezomib for brain metastasis. Radiat Oncol (Lond Engl). 2013;8:204.

    Article  Google Scholar 

  55. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  56. Schirrmacher V. T cell-mediated immunotherapy of metastases: state of the art in 2005. Expert Opin Biol Ther. 2005;5:1051–68.

    Article  CAS  PubMed  Google Scholar 

  57. Twyman-Saint Victor C, Rech AJ, Maity A, et al. Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature. 2015;520:373–7. This report elucidates the mechanism of interaction between combination of radiation, anti-CTLA4 and anti-PD-L1 to suggest a combination that should be explored in patients.

    Article  CAS  PubMed  Google Scholar 

  58. Frey B, Rubner Y, Kulzer L, et al. Antitumor immune responses induced by ionizing irradiation and further immune stimulation. Cancer Immunol Immunother. 2014;63:29–36.

    Article  CAS  PubMed  Google Scholar 

  59. Knisely JP, Yu JB, Flanigan J, Sznol M, Kluger HM, Chiang VL. Radiosurgery for melanoma brain metastases in the ipilimumab era and the possibility of longer survival. J Neurosurg. 2012;117:227–33.

    Article  PubMed  Google Scholar 

  60. Okita Y, Narita Y, Suzuki T, et al. Extended trastuzumab therapy improves the survival of HER2-positive breast cancer patients following surgery and radiotherapy for brain metastases. Mol Clin Oncol. 2013;1:995–1001.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ahmed KA, Stallworth DG, Kim Y, et al. Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann Oncol. 2016;27:434–41.

    Article  CAS  PubMed  Google Scholar 

  62. Tazi K, Hathaway A, Chiuzan C, Shirai K. Survival of melanoma patients with brain metastases treated with ipilimumab and stereotactic radiosurgery. Cancer Med. 2015;4:1–6.

    Article  CAS  PubMed  Google Scholar 

  63. Kiess AP, Wolchok JD, Barker CA, et al. Stereotactic radiosurgery for melanoma brain metastases in patients receiving ipilimumab: safety profile and efficacy of combined treatment. Int J Radiat Oncol Biol Phys. 2015;92:368–75. This single institution review suggests favorable local control and indicates the possibility of pseudoprogression with combined therapy.

    Article  PubMed  Google Scholar 

  64. Margolin K, Ernstoff MS, Hamid O, et al. Ipilimumab in patients with melanoma and brain metastases: an open-label, phase 2 trial. Lancet. 2012;13:459–65.

    Article  CAS  PubMed  Google Scholar 

  65. Fisher R, Larkin J. Treatment of brain metastases in patients with melanoma. Lancet. 2012;13:434–5.

    Article  PubMed  Google Scholar 

  66. Wen PY, Schiff D, Cloughesy TF, et al. It is time to include patients with brain tumors in phase I trials in oncology. J Clin Oncol Off J Am Soc Clin Oncol. 2011;29:3211–3.

    Article  Google Scholar 

  67. Dhermain F, Deutsch E. Stereotactic radiation and checkpoint inhibitors in melanoma patients with BM: a question of drug, timing or both? Ann Oncol. 2016;27:371–2.

    Article  CAS  PubMed  Google Scholar 

  68. Langley RR, Fidler IJ. The biology of brain metastasis. Clin Chem. 2013;59:180–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Peereboom MD, FACP.

Ethics declarations

Conflict of Interest

Zarmeneh Aly declares no conflict of interest.

David M. Peereboom has received a grant from Pfizer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aly, Z., Peereboom, D.M. Combination of Radiotherapy and Targeted Agents in Brain Metastasis: An Update. Curr Treat Options Neurol 18, 32 (2016). https://doi.org/10.1007/s11940-016-0416-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-016-0416-3

Keywords

Navigation