Skip to main content

Advertisement

Log in

Imaging Prostate Cancer: An Update on Positron Emission Tomography and Magnetic Resonance Imaging

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

Prostate cancer is a common cancer in men and continues to be a major health problem. Imaging plays an essential role in the clinical management of patients. An important goal for prostate cancer imaging is more accurate disease characterization through the synthesis of anatomic, functional, and molecular imaging information. Developments in imaging technologies, specifically magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT), have improved the detection rate of prostate cancer. MRI has improved lesion detection and local staging. Furthermore, MRI allows functional assessment with techniques such as diffusion-weighted MRI, MR spectroscopy, and dynamic contrast-enhanced MRI. The most common PET radiotracer, 18F-fluorodeoxyglucose, is not very useful in prostate cancer. However, in recent years other PET tracers have improved the accuracy of PET/CT imaging of prostate cancer. Among these, choline (labeled with 18F or 11C), 11C-acetate, and 18F-fluoride have demonstrated promising results, and other new radiopharmaceuticals are currently under evaluation in preclinical and clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance•• Of major importance

  1. •• Damber JE, Aus G: Prostate cancer. Lancet 2008, 371:1710–1721. This article offers an excellent review on prostate cancer.

    Article  PubMed  Google Scholar 

  2. Lassi K, Dawson NA: Emerging therapies in castrate-resistant prostate cancer. Curr Opin Oncol 2009, 21:260–265.

    Article  CAS  PubMed  Google Scholar 

  3. • Bouchelouche K, Capala J, Oehr P: Positron emission tomography/computed tomography and radioimmunotherapy of prostate cancer. Curr Opin Oncol 2009, 21:469–474. This review briefly summarizes recent advances in PET/CT imaging and radioimmunotherapy of prostate cancer.

    Article  PubMed  Google Scholar 

  4. • Bouchelouche K, Capala J: ‘Image and treat’: an individualized approach to urological tumors. Curr Opin Oncol 2010 doi:10.1097/CCO.0b013e3283373d5c. This short review discusses targets for personalized medicine with radionuclides.

  5. •• Kelloff GJ, Choyke P, Coffey DS: Challenges in clinical prostate cancer: role of imaging. AJR Am J Roentgenol 2009, 192:1455–1470. Results from a recent workshop on prostate cancer and imaging technology are reviewed. The workshop was arranged by the Cancer Imaging Program of the National Cancer Institute, National Institutes of Health, Bethesda, USA.

    Article  PubMed  Google Scholar 

  6. • Turkbey B, Albert PS, Kurdziel K, Choyke PL: Imaging localized prostate cancer: current approaches and new developments. AJR Am J Roentgenol 2009, 192:1471–1480. This article discusses recent developments in imaging technologies, particularly MRI and PET/CT, which may lead to improved lesion detection and staging of prostate cancer.

    Article  PubMed  Google Scholar 

  7. • Apolo AB, Pandit-Taskar N, Morris MJ: Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med 2008, 49:2031–2041. In this article, recent advances in radiotracers for molecular imaging of advanced prostate cancer are described.

    Article  PubMed  Google Scholar 

  8. • Turkbey B, Pinto PA, Choyke PL: Imaging techniques for prostate cancer: implications for focal therapy. Nat Rev Urol 2009, 6:191–203. The authors review the advantages and disadvantages of conventional imaging techniques, developments for targeted imaging, and the possible role of image-guided biopsy and therapy for localized prostate cancer.

    Article  PubMed  Google Scholar 

  9. Bouchelouche K, Oehr P: Positron emission tomography and positron emission tomography/computerized tomography of urological malignancies: an update review. J Urol 2008, 179:34–45.

    Article  CAS  PubMed  Google Scholar 

  10. Jana S, Blaufox MD: Nuclear medicine studies of the prostate, testes, and bladder. Semin Nucl Med 2006, 36:51–72.

    Article  PubMed  Google Scholar 

  11. Toth G, Lengyel Z, Balkay L, et al.: Detection of prostate cancer with 11C-methionine positron emission tomography. J Urol 2005, 173:66–69.

    PubMed  Google Scholar 

  12. Schuster DM, Votaw JR, Nieh PT, et al.: Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 2007, 48:56–63.

    CAS  PubMed  Google Scholar 

  13. Dehdashti F, Picus J, Michalski JM, et al.: Positron tomographic assessment of androgen receptors in prostatic carcinoma. Eur J Nucl Med Mol Imaging 2005, 32:344–350.

    Article  PubMed  Google Scholar 

  14. •• Elsasser-Beile U, Buhler P, Wolf P: Targeted therapies for prostate cancer against the prostate specific membrane antigen. Curr Drug Targets 2009, 10:118–125. This is an excellent review on the development of PSMA-targeted therapies.

    Article  CAS  PubMed  Google Scholar 

  15. •• Bouchelouche K, Choyke PL, Capala J: Prostate specific membrane antigen—a target for imaging and therapy with radionuclides. Discov Med 2010, 9:55–61. PSMA is a promising target for an “image and treat” strategy with radionuclides.

    PubMed  Google Scholar 

  16. Milowsky MI, Nanus DM, Kostakoglu L, et al.: Phase I trial of yttrium-90-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for androgen-independent prostate cancer. J Clin Oncol 2004, 22:2522–2531.

    Article  CAS  PubMed  Google Scholar 

  17. Bander NH, Milowsky MI, Nanus DM, et al.: Phase I trial of 177lutetium-labeled J591, a monoclonal antibody to prostate-specific membrane antigen, in patients with androgen-independent prostate cancer. J Clin Oncol 2005, 23:4591–4601.

    Article  CAS  PubMed  Google Scholar 

  18. Wolf P, Freudenberg N, Buhler P, et al.: Three conformational antibodies specific for different PSMA epitopes are promising diagnostic and therapeutic tools for prostate cancer. Prostate 2010, 70:562–569.

    Google Scholar 

  19. • Regino CA, Wong KJ, Milenic DE, et al.: Preclinical evaluation of a monoclonal antibody (3C6) specific for prostate-specific membrane antigen. Curr Radiopharm 2009, 2:9–17. The authors present a new mAb for PSMA imaging.

    Article  CAS  PubMed  Google Scholar 

  20. •• Elsasser-Beile U, Reischl G, Wiehr S, et al.: PET imaging of prostate cancer xenografts with a highly specific antibody against the prostate-specific membrane antigen. J Nucl Med 2009, 50:606–611. The antibody, mAb 3/A12, labeled with 64Cu, was used in this in vivo study for PET imaging of PSMA-positive tumors.

    Article  PubMed  CAS  Google Scholar 

  21. •• Hillier SM, Maresca KP, Femia FJ, et al.: Preclinical evaluation of novel glutamate-urea-lysine analogues that target prostate-specific membrane antigen as molecular imaging pharmaceuticals for prostate cancer. Cancer Res 2009, 69:6932–6940. This article discusses two promising agents, MIP-1072 and MIP 1095, for imaging PSMA-positive cancer.

    Article  CAS  PubMed  Google Scholar 

  22. •• Kramer-Marek G, Kiesewetter DO, Capala J: Changes in HER2 expression in breast cancer xenografts after therapy can be quantified using PET and 18F-labeled affibody molecules. J Nucl Med 2009, 50:1131–1139. Affibody molecules labeled with 18F can be used to assess HER2 expression in vivo by PET, and monitor possible changes of receptor expression in response to therapeutic interventions.

    Article  CAS  PubMed  Google Scholar 

  23. Farsad M, Schiavina R, Castellucci P, et al.: Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 2005, 46:1641–1649.

    Google Scholar 

  24. Scher B, Seitz M, Albinger W, et al.: Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imaging 2007, 34:45–53.

    Article  PubMed  Google Scholar 

  25. Cimitan M, Bortolus R, Morassut S, et al.: [(18)F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 2006, 33:1387–1398.

    Article  PubMed  Google Scholar 

  26. •• Castellucci P, Fuccio C, Nanni C, et al.: Influence of trigger PSA and PSA kinetics on 11C-Choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med 2009, 50:1394–1400. The authors showed that the PET/CT detection rate of prostate cancer recurrence is influenced by trigger PSA and PSA kinetics. This may have clinical implications.

    Article  PubMed  CAS  Google Scholar 

  27. Albrecht S, Buchegger F, Soloviev D, et al.: (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging 2007, 34:185–196.

    Article  PubMed  Google Scholar 

  28. Even-Sapir E, Metser U, Mishani E, et al.: The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 2006, 47:287–297.

    PubMed  Google Scholar 

  29. •• Beheshti M, Vali R, Waldenberger P, et al.: Detection of bone metastases in patients with prostate cancer by (18)F fluorocholine and (18)F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 2008, 35:1766–1774. This prospective study compared 18F-fluorocholine and 18F-fluoride PET/CT for the detection of bone metastases from prostate cancer.

    Article  PubMed  Google Scholar 

  30. Swindle P, Eastham JA, Ohori M, et al.: Do margins matter? The prognostic significance of positive surgical margins in radical prostatectomy specimens. J Urol 2008, 179:S47–S51.

    Article  PubMed  Google Scholar 

  31. el-Gabry EA, Halpern EJ, Strup SE, Gomella LG: Imaging prostate cancer: current and future applications. Oncology (Williston Park) 2001 15:325–336.

    CAS  Google Scholar 

  32. Hocht S, Wiegel T, Bottke D, et al.: Computed tomogram prior to prostatectomy. Advantage in defining planning target volumes for postoperative adjuvant radiotherapy in patients with stage C prostate cancer? Strahlenther Onkol 2002, 178:134–138.

    Article  PubMed  Google Scholar 

  33. Akin O, Sala E, Moskowitz CS, et al.: Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology 2006, 239:784–792.

    Article  PubMed  Google Scholar 

  34. Scheidler J, Hricak H, Vigneron DB, et al.: Prostate cancer: localization with three-dimensional proton MR spectroscopic imaging—clinicopathologic study. Radiology 1999, 213:473–480.

    CAS  PubMed  Google Scholar 

  35. Wefer AE, Hricak H, Vigneron DB, et al.: Sextant localization of prostate cancer: comparison of sextant biopsy, magnetic resonance imaging and magnetic resonance spectroscopic imaging with step section histology. J Urol 2000, 164:400–404.

    Article  CAS  PubMed  Google Scholar 

  36. Ikonen S, Kivisaari L, Tervahartiala P, et al.: Prostatic MR imaging. Accuracy in differentiating cancer from other prostatic disorders. Acta Radiol 2001, 42:348–354.

    CAS  Google Scholar 

  37. Kwek JW, Thng CH, Tan PH, et al.: Phased-array magnetic resonance imaging of the prostate with correlation to radical prostatectomy specimens: local experience. Asian J Surg 2004, 27:219–224.

    Article  PubMed  Google Scholar 

  38. Nakashima J, Tanimoto A, Imai Y, et al.: Endorectal MRI for prediction of tumor site, tumor size, and local extension of prostate cancer. Urology 2004 64:101–105.

    Article  PubMed  Google Scholar 

  39. Yamaguchi T, Lee J, Uemura H, et al.: Prostate cancer: a comparative study of 11C-choline PET and MR imaging combined with proton MR spectroscopy. Eur J Nucl Med Mol Imaging 2005, 32:742–748.

    Article  CAS  PubMed  Google Scholar 

  40. Cirillo S, Petracchini M, Scotti L, et al.: Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur Radiol 2009, 19:761–769.

    Article  PubMed  Google Scholar 

  41. Sala E, Eberhardt SC, Akin O, et al.: Endorectal MR imaging before salvage prostatectomy: tumor localization and staging. Radiology 2006, 238:176–183.

    Article  PubMed  Google Scholar 

  42. Tan JS, Thng CH, Tan PH, et al.: Local experience of endorectal magnetic resonance imaging of prostate with correlation to radical prostatectomy specimens. Ann Acad Med Singapore 2008, 37:40–43.

    PubMed  Google Scholar 

  43. Futterer JJ, Engelbrecht MR, Huisman HJ, et al.: Staging prostate cancer with dynamic contrast-enhanced endorectal MR imaging prior to radical prostatectomy: experienced versus less experienced readers. Radiology 2005, 237:541–549.

    Article  PubMed  Google Scholar 

  44. Bloch BN, Furman-Haran E, Helbich TH, et al.: Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging—initial results. Radiology 2007, 245:176–185.

    Article  PubMed  Google Scholar 

  45. •• Weinreb JC, Blume JD, Coakley FV, et al.: Prostate cancer: sextant localization at MR imaging and MR spectroscopic imaging before prostatectomy—results of ACRIN prospective multi-institutional clinicopathologic study. Radiology 2009, 251:122–133. This prospective multicenter study compared the benefit of T2W MR imaging and MR spectroscopy versus T2W MR imaging alone.

    Article  PubMed  Google Scholar 

  46. Issa B: In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging 2002, 16:196–200.

    Article  PubMed  Google Scholar 

  47. Tamada T, Sone T, Jo Y, et al.: Prostate cancer: relationships between postbiopsy hemorrhage and tumor detectability at MR diagnosis. Radiology 2008, 248:531–539.

    Article  PubMed  Google Scholar 

  48. Kim CK, Park BK, Lee HM, Kwon GY: Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3 T using a phased-array coil: preliminary results. Invest Radiol 2007, 42:842–847.

    Article  PubMed  Google Scholar 

  49. Miao H, Fukatsu H, Ishigaki T: Prostate cancer detection with 3-T MRI: comparison of diffusion-weighted and T2-weighted imaging. Eur J Radiol 2007, 61:297–302.

    Article  PubMed  Google Scholar 

  50. Haider MA, van der Kwast TH, Tanguay J, et al.: Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol 2007, 189:323–328.

    Article  PubMed  Google Scholar 

  51. Kozlowski P, Chang SD, Jones EC, et al.: Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis—correlation with biopsy and histopathology. J Magn Reson Imaging 2006, 24:108–113.

    Article  PubMed  Google Scholar 

  52. Reinsberg SA, Payne GS, Riches SF, et al.: Combined use of diffusion-weighted MRI and 1H MR spectroscopy to increase accuracy in prostate cancer detection. AJR Am J Roentgenol 2007, 188:91–98.

    Article  PubMed  Google Scholar 

  53. Mazaheri Y, Shukla-Dave A, Hricak H, et al.: Prostate cancer: identification with combined diffusion-weighted MR imaging and 3D 1H MR spectroscopic imaging—correlation with pathologic findings. Radiology 2008, 246:480–488.

    Article  PubMed  Google Scholar 

  54. Kurhanewicz J, Vigneron DB, Hricak H, et al.: Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology 1996, 198:795–805.

    CAS  PubMed  Google Scholar 

  55. Zakian KL, Sircar K, Hricak H, et al.: Correlation of proton MR spectroscopic imaging with Gleason score based on step-section pathologic analysis after radical prostatectomy. Radiology 2005, 234:804–814.

    Article  PubMed  Google Scholar 

  56. Tofts PS, Brix G, Buckley DL, et al.: Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 1999, 10:223–232.

    Article  CAS  PubMed  Google Scholar 

  57. Concato J, Jain D, Li WW, et al.: Molecular markers and mortality in prostate cancer. BJU Int 2007, 100:1259–1263.

    Article  PubMed  Google Scholar 

  58. Noworolski SM, Vigneron DB, Chen AP, Kurhanewicz J: Dynamic contrast-enhanced MRI and MR diffusion imaging to distinguish between glandular and stromal prostatic tissues. Magn Reson Imaging 2008, 26:1071–1080.

    Article  PubMed  Google Scholar 

  59. •• Ocak I, Bernardo M, Metzger G, et al.: Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. AJR Am J Roentgenol 2007, 189:849. This prospective study showed that specificity of prostate MRI at 3T for prostate cancer is improved by performing DCE-MRI and using pharmacokinetic parameters.

    Article  PubMed  Google Scholar 

  60. Kim JK, Hong SS, Choi YJ, et al.: Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging 2005, 22:639–646.

    Article  CAS  PubMed  Google Scholar 

  61. Villers A, Puech P, Mouton D, et al.: Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol 2006, 176:2432–2437.

    Article  PubMed  Google Scholar 

  62. Cheikh AB, Girouin N, Colombel M, et al.: Evaluation of T2-weighted and dynamic contrast-enhanced MRI in localizing prostate cancer before repeat biopsy. Eur Radiol 2009, 19:770–778.

    Article  PubMed  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirsten Bouchelouche.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouchelouche, K., Turkbey, B., Choyke, P. et al. Imaging Prostate Cancer: An Update on Positron Emission Tomography and Magnetic Resonance Imaging. Curr Urol Rep 11, 180–190 (2010). https://doi.org/10.1007/s11934-010-0105-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-010-0105-9

Keywords

Navigation