Skip to main content
Log in

Whole-body MRI and PET/CT in multiple myeloma patients during staging and after treatment: personal experience in a longitudinal study

Risonanza magnetica whole body e TC/PET in pazienti con mieloma multiplo in stadiazione e dopo trattamento: esperienza personale in uno studio longitudinale

  • Diagnostic Imaging in Oncology / Diagnostica Per Immagini In Oncologia
  • Published:
La radiologia medica Aims and scope Submit manuscript

Abstract

Purpose

Diagnostic imaging plays a pivotal role in staging and prognostic assessment of multiple myeloma (MM) as well as planning and monitoring treatment. The aim of our study was to estimate the diagnostic accuracy of wholebody magnetic resonance imaging (WB-MRI) and positron emission tomography/computed tomography (PET/CT) in MM patients studied before and after treatment.

Materials and methods

We considered 22 consecutive patients (10 males, 12 females; age range, 48–83 years) with newly diagnosed MM (NDMM group), and the same 22 patients underwent at least one re-assessment after treatment (previously treated MM, PTMM group). WBMRI and PET/CT were performed within days from each other in both the NDMM (22 studies) and PTMM (29 studies) group. The imaging findings were compared to the results of bone marrow aspiration.

Results

PET/CT was positive in 18/22 NDMM patients, whereas WB-MRI correctly identified 100% of patients. Of 20 responder patients in the PTMM group, 16 were negative at PET/CT and 12/20 at MRI. By contrast, of the nine nonresponder patients, MRI correctly detected active disease in all cases, and PET only in seven.

Conclusions

WB-MRI proved superior to PET/CT in detecting MM, especially in diffuse disease. PET/CT appears to be more sensitive in the assessment of MM after treatment.

Riassunto

Obiettivo

La diagnostica per immagini svolge un ruolo centrale nella stadiazione, nella definizione prognostica oltre che nella pianificazione e nel monitoraggio della terapia in pazienti con mieloma multiplo (MM). Scopo del nostro studio è stato valutare l’accuratezza diagnostica della whole body (WB)-risonanza magnetica (RM) e della tomografia computerizzata (TC)/tomografia ad emissione di positroni (PET) in pazienti con MM prima e dopo trattamento.

Materiali e metodi

Sono stati arruolati 22 pazienti consecutivi (10 maschi e 12 femmine, di età compresa tra 44 e 83 anni) alla diagnosi (gruppo NDMM). Gli stessi pazienti sono stati valutati longitudinalmente dopo trattamento (gruppo PTMM). WB-RM e TC/PET sono state effettuate a breve distanza tra loro sia nel gruppo NDMM (22 esami) che nel gruppo PTMM (29 esami). I risultati dell’imaging sono stati infine correlati all’aspirato midollare. Risultati. Nel gruppo NDMM la TC/PET è risultata positiva i 18/22 pazienti, mentre la WB-RM nel 100%. Nel gruppo PTMM 20 pazienti responsivi dopo terapia, 16 risultavano negativi alla TC/PET, mentre 12 negativi all’RM. Al contrario nei 9 pazienti non-responsivi risultavano positivi tutti all’RM e 7 alla TC/PET.

Conclusioni

La WB-RM è risultata superiore alla TC/PET con fluor-deossiglucosio nella diagnosi di malattia specie se diffusa, mentre la TC/PET appare più sensibile dopo trattamento.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References/Bibliografia

  1. Angtuaco EJC, Fassas ABT, Walker R et al (2004) Multiple myeloma: clinical review and diagnostic imaging. Radiology 231:11–23

    Article  PubMed  Google Scholar 

  2. Hillengass J, Neben K, Goldschmidt H (2010) Current status and developments in diagnosis and therapy of multiple myeloma. J Cancer Res Clin Oncol 136:151–155

    Article  PubMed  Google Scholar 

  3. Tamburrini O, Cova MA, Console D, Martingano P (2007) The evolving role of MRI in oncohaematological disorders. Radiol Med 112:703–721

    Article  PubMed  CAS  Google Scholar 

  4. Healy CF, Murray JG, Eustace SJ et al (2011) Multiple myeloma: a review of imaging features and radiological techniques. Bone Marrow Res 2011:583439. doi: 10.1155/2011/583439

    Google Scholar 

  5. Lütje S, de Rooy JW, Croockewit S et al (2009) Role of radiography, MRI and FDG-PET/CT in diagnosing, staging and therapeutical evaluation of patients with multiple myeloma. Ann Hematol 88:1161–1168

    Article  PubMed  Google Scholar 

  6. D’Sa S, Abildgaard N, Tighe J et al (2007) Guidelines for the use of imaging in the management of myeloma. Br J Haematol 137:49–63

    PubMed  Google Scholar 

  7. Delorme S, Baur-Melnyk A (2009) Imaging in multiple myeloma. Eur J Radiol 70:401–408

    Article  PubMed  Google Scholar 

  8. Bredella MA, Steinbach L, Caputo G et al (2005) Value of FDG PET in the assessment of patient with multiple myeloma. AJR Am J Roentgenol 184:1199–1204

    Article  PubMed  Google Scholar 

  9. Haznedar R, Akı SZ, Akdemir OU et al (2011) Value of 18F-fluorodeoxyglucose uptake in positron emission tomography/ computed tomography in predicting survival in multiple myeloma. Eur J Nucl Med Mol Imaging 38:1046–1053

    Article  PubMed  CAS  Google Scholar 

  10. Nanni C, Zamagni E, Cavo M et al (2007) 11C-choline vs. 18F-FDG PET/ CT in assessing bone involvement in patients with multiple myeloma. World J Surg Oncol 5:68

    Article  PubMed  Google Scholar 

  11. Nanni C, Fantini L, Nicolini S, Fanti S (2010) Non FDG PET. Clin Radiol 65:536–548

    Article  PubMed  CAS  Google Scholar 

  12. Nishizawa M, Nakamoto Y, Suga T et al (2010)11C-Methionine PET/CT for multiple myeloma. Int J Hematol 91:733–734

    Article  PubMed  Google Scholar 

  13. Dankerl A, Liebisch P, Glatting G et al (2007) Multiple myeloma: molecular imaging with 11C-methionine PET/ CT — Initial experience. Radiology 242:498–508

    Article  PubMed  Google Scholar 

  14. Gleeson TG, Moriarty J, Shortt CP et al (2009) Accuracy of whole-body low-dose multidetector CT (WBLDCT) versus skeletal survey in the detection of myelomatous lesions, and correlation of disease distribution with wholebody MRI (WBMRI). Skeletal Radiol 38:225–236

    Article  PubMed  CAS  Google Scholar 

  15. Carty F, Shortt CP, Shelly MJ et al (2010) Whole-body imaging modalities in oncology. Semin Musculoskelet Radiol 14:68–85

    Article  PubMed  Google Scholar 

  16. Schmidt GP, Reiser MF, Baur-Melnyk A (2009) Whole-body imaging of bone marrow. Semin Musculoskelet Radiol 13:120–133

    Article  PubMed  Google Scholar 

  17. Shortt CP, Carty F, Murray JG (2010) The role of whole-body imaging in the diagnosis, staging, and followup of multiple myeloma. Semin Musculoskelet Radiol 14:37–46

    Article  PubMed  Google Scholar 

  18. Baur A, Stäbler A, Nagel D et al (2002) Magnetic resonance imaging as a supplement for the clinical staging system of Durie and Salmon? Cancer 95:1334–1345

    Article  PubMed  Google Scholar 

  19. Baur-Melnyk A, Buhmann S, Dürr HR, Reiser M (2005) Role of MRI for the diagnosis and prognosis of multiple myeloma. Eur J Radiol 55:56–63

    Article  PubMed  Google Scholar 

  20. Durie BG (2006) The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer 42:1539–1543

    Article  PubMed  Google Scholar 

  21. Dinter DJ, Neff WK, Klaus J et al (2009) Comparison of whole-body MR imaging and conventional X-ray examination in patients with multiple myeloma and implications for therapy. Ann Hematol 88:457–464

    Article  PubMed  Google Scholar 

  22. Durie BG, Harousseau JL, Miguel JS et al (2006) International uniform response criteria for multiple myeloma. Leukemia 20:1467–1473

    Article  PubMed  CAS  Google Scholar 

  23. Kyle RA, Rajkumar SV (2009) Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma. Leukemia 23:3–9

    Article  PubMed  CAS  Google Scholar 

  24. Palumbo A, Rajkumar SV (2009) Treatment of newly diagnosed myeloma. Leukemia 23:449–456

    Article  PubMed  CAS  Google Scholar 

  25. Winterbottom AP, Shaw AS (2009) Imaging patients with myeloma. Clin Radiol 64:1–11

    Article  PubMed  CAS  Google Scholar 

  26. Hanrahan CJ, Christensen CR, Crim JR (2010) Current concepts in the evaluation of multiple myeloma with MR imaging and FDG PET/CT. Radiographics 30:127–142

    Article  PubMed  Google Scholar 

  27. Terpos E, Moulopoulos LA, Dimopoulos MA (2011) Advances in imaging and the management of myeloma bone disease. J Clin Oncol 29:1907–1915

    Article  PubMed  Google Scholar 

  28. Cascini GL, Cuccurullo V, Tamburrini O et al (2010) Nuclear medicine in multiple myeloma — more than diagnosis. Nucl Med Rev Cent East Eur 13:32–38

    PubMed  Google Scholar 

  29. Bäuerle T, Hillengass J, Fechtner K et al (2009) Multiple myeloma and monoclonal gammopathy of undetermined significance: importance of whole-body versus spinal MR imaging. Radiology 252:477–485

    Article  PubMed  Google Scholar 

  30. Hall MN, Jagannathan JP, Ramaiya NH et al (2010) Imaging of extraosseous myeloma: CT, PET/CT and MRI features. AJR Am J Roentgnol 195:1057–1065

    Article  Google Scholar 

  31. Hain SF, Khan S, Stevenson W (2012) 18F-FDG PET to identify soft tissue disease in multiple myeloma. Eur J Nucl Med Mol Imaging 39:553–554

    Article  PubMed  Google Scholar 

  32. Fechtner K, Hillengass J, Delorme S et al (2010) Staging monoclonal plasma cell disease: comparison of the Durie-Salmon and the Durie-Salmon PLUS staging systems. Radiology 257:195–204

    Article  PubMed  Google Scholar 

  33. Rajkumar SV, Harousseau JL, Durie B et al (2011) Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 1. Blood 117:4691–4695

    Article  PubMed  CAS  Google Scholar 

  34. Munshi NC, Anderson KC, Bergsagel PL et al (2011) Consensus recommendations for the uniform reporting of clinical trials: report of the International Myeloma Workshop Consensus Panel 2. Blood 117:4696–4700

    Article  PubMed  CAS  Google Scholar 

  35. Dimopoulos M, Kyle R, Fermand JP et al (2011) Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood 117:4701–4705

    Article  PubMed  CAS  Google Scholar 

  36. Van Lammeren-Venema D, Regelink JC, Riphagen II et al (2011) 18F-fluorodeoxyglucose positron emission tomography in assessment of myelomarelated bone disease: A systematic review. Cancer 118:1971–1978

    Article  PubMed  Google Scholar 

  37. Bartel TB, Haessler J, Brown TL et al (2009) F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood 114:2068–2076

    Article  PubMed  CAS  Google Scholar 

  38. Shortt CP (2011) Multiple myeloma: whole-body MRI vs. PET and low dose whole-body CT (whole-body imaging) Idelson Gnocchi, Napoli, Italia

    Google Scholar 

  39. Shortt CP, Gleeson TG, Breen KA et al (2009) Whole-body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol 192:980–986

    Article  PubMed  Google Scholar 

  40. Daldrup-Link HE, Henning T, Link TM (2007) MR imaging of therapy-induced changes of bone marrow. Eur Radiol 17:743–761

    Article  PubMed  Google Scholar 

  41. Pahade JK, LeBedis CA, Raptopoulos VD et al (2011) Incidence of contrastinduced nephropathy in patients with multiple myeloma undergoing contrastenhanced CT. AJR Am J Roentgenol 196:1094–1101

    Article  PubMed  Google Scholar 

  42. Lin C, Luciani A, Belhadj K et al (2010) Multiple myeloma treatment response assessment with wholebody dynamic contrast-enhanced MR imaging. Radiology 254:521–531

    Article  PubMed  Google Scholar 

  43. Zechmann CM, Traine L, Meissner T et al (2012) Parametric histogram analysis of dynamic contrast-enhanced MRI in multiple myeloma: a technique to evaluate angiogenic response to therapy? Acad Radiol 19:100–108

    Article  PubMed  Google Scholar 

  44. Takahara T, Imai Y, Yamashita T et al (2004) Diffusion weighted wholebody imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282

    PubMed  Google Scholar 

  45. Khoo MM, Tyler PA, Saifuddin A, Padhani AR (2011) Diffusion-weighted imaging (DWI) in musculoskeletal MRI: a critical review. Skeletal Radiol 40:665–681

    Article  PubMed  Google Scholar 

  46. Hillengass J, Bäuerle T, Bartl R et al (2011) Diffusion-weighted imaging for non-invasive and quantitative monitoring of bone marrow infiltration in patients with monoclonal plasma cell disease: a comparative study with histology. Br J Haematol 153:721–728

    Article  PubMed  Google Scholar 

  47. Weininger M, Lauterbach B, Knop S et al (2009) Whole-body MRI of multiple myeloma: comparison of different MRI sequences in assessment of different growth patterns. Eur J Radiol 69:339–345

    Article  PubMed  Google Scholar 

  48. Afaq A, Andreou A, Koh DM (2010) Diffusion-weighted magnetic resonance imaging for tumour response assessment: why, when and how? Cancer Imaging 10:179–188

    Article  Google Scholar 

  49. Baur A, Dietrich O, Reiser M (2003) Diffusion-weighted imaging of bone marrow: current status. Eur Radiol 13:1699–708

    Article  PubMed  Google Scholar 

  50. Sommer G, Klarhöfer M, Lenz C et al (2011) Signal characteristics of focal bone marrow lesions in patients with multiple myeloma using whole body T1w-TSE, T2w-STIR and diffusion-weighted imaging with background suppression. Eur Radiol 21:857–862

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Tamburrini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cascini, G.L., Falcone, C., Console, D. et al. Whole-body MRI and PET/CT in multiple myeloma patients during staging and after treatment: personal experience in a longitudinal study. Radiol med 118, 930–948 (2013). https://doi.org/10.1007/s11547-013-0946-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11547-013-0946-7

Keywords

Parole chiave

Navigation