Skip to main content

Advertisement

Log in

Imaging Proliferation to Monitor Early Response of Lymphoma to Cytotoxic Treatment

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Positron emission tomography with the thymidine analogue 3′-deoxy-3′-[18F]fluorothymidine (FLT) has been reported to closely reflect lymphoma proliferation in vivo. In this preclinical study, we have investigated if FLT can also be utilized for imaging therapy-induced alterations of the nucleoside metabolism and if FLT is a surrogate marker for early response to cytotoxic treatment.

Materials and Methods

Immunodeficient mice bearing high-grade lymphoma xenotransplants were treated with the cytotoxic agent doxorubicin (day 0). In the time course of day +1 to +9, antiproliferative effects were assessed non-invasively with FLT-PET and correlated to changes of the proliferation fraction and induction of apoptosis, as assessed by immunohistochemistry.

Results

Tumor growth in untreated animals was significantly higher than in treated animals. In FLT-PET scans, these observations correlated with a significant decrease of tumor-to-background ratio in the therapy group already at day 1. Likewise, median tumor-to-muscle ratio of FLT uptake already declined at day 1. The proliferation fraction assessed by Ki-67 immunohistochemistry decreased after chemotherapy, while activated caspase 3 increased, suggesting both cell cycle arrest and induction of apoptosis as underlying mechanisms of the observed PET-signal alterations.

Conclusion

In a lymphoma xenotransplant model, we show that positron emission tomography using the proliferation marker FLT is suitable to detect early response to cytotoxic treatment. A significant decrease of FLT uptake but not tumor growth was detectable already 24 h after therapy and correlated with reduced proliferation and induction of apoptosis. Thus, FLT-PET has a potential for imaging early response to treatment in malignant lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheson BD, Horning SJ, Coiffier B et al (1999) Report of an international workshop to standardize response criteria for non-Hodgkin's lymphomas. NCI Sponsored International Working Group. J Clin Oncol 17:1244

    PubMed  CAS  Google Scholar 

  2. Lister TA, Crowther D, Sutcliffe SB et al (1989) Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin's disease: Cotswolds meeting. J Clin Oncol 7:1630–1636

    PubMed  CAS  Google Scholar 

  3. Surbone A, Longo DL, DeVita VT Jr et al (1988) Residual abdominal masses in aggressive non-Hodgkin's lymphoma after combination chemotherapy: significance and management. J Clin Oncol 6:1832–1837

    PubMed  CAS  Google Scholar 

  4. Jerusalem G, Beguin Y, Fassotte MF et al (1999) Whole-body positron emission tomography using 18F-fluorodeoxyglucose for posttreatment evaluation in Hodgkin's disease and non-Hodgkin's lymphoma has higher diagnostic and prognostic value than classical computed tomography scan imaging. Blood 94:429–433

    PubMed  CAS  Google Scholar 

  5. Juweid ME, Stroobants S, Hoekstra OS et al (2007) Use of positron emission tomography for response assessment of lymphoma: consensus of the Imaging Subcommittee of International Harmonization Project in Lymphoma. J Clin Oncol 25:571–578

    Article  PubMed  Google Scholar 

  6. Kazama T, Faria SC, Varavithya V, Phongkitkarun S, Ito H, Macapinlac HA (2005) FDG PET in the evaluation of treatment for lymphoma: clinical usefulness and pitfalls. Radiographics 25:191–207

    Article  PubMed  Google Scholar 

  7. Sandherr M, von Schilling C, Link T et al (2001) Pitfalls in imaging Hodgkin's disease with computed tomography and positron emission tomography using fluorine-18-fluorodeoxyglucose. Ann Oncol 12:719–722

    Article  PubMed  CAS  Google Scholar 

  8. van Waarde A, Cobben DC, Suurmeijer AJ et al (2004) Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med 45:695–700

    PubMed  Google Scholar 

  9. Martiat P, Ferrant A, Labar D et al (1988) In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin's lymphoma using positron emission tomography. J Nucl Med 29:1633–1637

    PubMed  CAS  Google Scholar 

  10. Shields AF, Mankoff DA, Link JM et al (1998) Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med 39:1757–1762

    PubMed  CAS  Google Scholar 

  11. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  12. Barthel H, Perumal M, Latigo J et al (2005) The uptake of 3′-deoxy-3′-[18F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels. Eur J Nucl Med Mol Imaging 32:257–263

    Article  PubMed  CAS  Google Scholar 

  13. Kong XB, Zhu QY, Vidal PM et al (1992) Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 36:808–818

    PubMed  CAS  Google Scholar 

  14. Sherley JL, Kelly TJ (1988) Regulation of human thymidine kinase during the cell cycle. J Biol Chem 263:8350–8358

    PubMed  CAS  Google Scholar 

  15. Eriksson S, Arner E, Spasokoukotskaja T et al (1994) Properties and levels of deoxynucleoside kinases in normal and tumor cells; implications for chemotherapy. Adv Enzyme Regul 34:13–25

    Article  PubMed  CAS  Google Scholar 

  16. Seitz U, Wagner M, Neumaier B et al (2002) Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[(18)F]fluoro-3′-deoxythymidine ([(18)F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging 29:1174–1181

    Article  PubMed  CAS  Google Scholar 

  17. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43:1210–1217

    PubMed  CAS  Google Scholar 

  18. Lu L, Samuelsson L, Bergstrom M, Sato K, Fasth KJ, Langstrom B (2002) Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers. J Nucl Med 43:1688–1698

    PubMed  CAS  Google Scholar 

  19. Chen W, Cloughesy T, Kamdar N et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952

    PubMed  CAS  Google Scholar 

  20. Cobben DC, Elsinga PH, Suurmeijer AJ et al (2004) Detection and grading of soft tissue sarcomas of the extremities with (18)F-3′-fluoro-3′-deoxy-L-thymidine. Clin Cancer Res 10:1685–1690

    Article  PubMed  CAS  Google Scholar 

  21. Smyczek-Gargya B, Fersis N, Dittmann H et al (2004) PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging 31:720–724

    Article  PubMed  Google Scholar 

  22. Wagner M, Seitz U, Buck A et al (2003) 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Res 63:2681–2687

    PubMed  CAS  Google Scholar 

  23. Buck AK, Bommer M, Stilgenbauer S et al (2006) Molecular imaging of proliferation in malignant lymphoma. Cancer Res 66:11055–11061

    Article  PubMed  CAS  Google Scholar 

  24. Herrmann K, Wieder HA, Buck AK et al (2007) Early response assessment using 3′-deoxy-3′-[18F]fluorothymidine-positron emission tomography in high-grade non-Hodgkin′s lymphoma. Clin Cancer Res 13:3552–3558

    Article  PubMed  CAS  Google Scholar 

  25. Buck AK, Kratochwil C, Glatting G et al (2007) Early assessment of therapy response in malignant lymphoma with the thymidine analogue [(18)F]FLT. Eur J Nucl Med Mol Imaging 34:1775–1782

    Article  PubMed  CAS  Google Scholar 

  26. Momparler RL, Karon M, Siegel SE, Avila F (1976) Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res 36:2891–2895

    PubMed  CAS  Google Scholar 

  27. Di Bartolomeo S, Di Sano F, Piacentini M, Spinedi A (2000) Apoptosis induced by doxorubicin in neurotumor cells is divorced from drug effects on ceramide accumulation and may involve cell cycle-dependent caspase activation. J Neurochem 75:532–539

    Article  PubMed  Google Scholar 

  28. Zhou M, Gu L, Li F, Zhu Y, Woods WG, Findley HW (2002) DNA damage induces a novel p53-survivin signaling pathway regulating cell cycle and apoptosis in acute lymphoblastic leukemia cells. J Pharmacol Exp Ther 303:124–131

    Article  PubMed  CAS  Google Scholar 

  29. Kano Y, Akutsu M, Tsunoda S et al (2001) In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 97:1999–2007

    Article  PubMed  CAS  Google Scholar 

  30. Yang YJ, Ryu JS, Kim SY et al (2006) Use of 3′-deoxy-3′-[18F]fluorothymidine PET to monitor early responses to radiation therapy in murine SCCVII tumors. Eur J Nucl Med Mol Imaging 33:412–419

    Article  PubMed  CAS  Google Scholar 

  31. Apisarnthanarax S, Alauddin MM, Mourtada F et al (2006) Early detection of chemoradioresponse in esophageal carcinoma by 3′-deoxy-3′-3H-fluorothymidine using preclinical tumor models. Clin Cancer Res 12:4590–4597

    Article  PubMed  CAS  Google Scholar 

  32. Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO (2005) Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res 65:4202–4210

    Article  PubMed  CAS  Google Scholar 

  33. Kenny L, Coombes RC, Vigushin DM, Al-Nahhas A, Shousha S, Aboagye EO (2007) Imaging early changes in proliferation at 1 week post chemotherapy: a pilot study in breast cancer patients with 3′-deoxy-3′-[(18)F]fluorothymidine positron emission tomography. Eur J Nucl Med Mol Imaging 34:1339–1347

    Article  PubMed  Google Scholar 

  34. Troost EG, Vogel WV, Merkx MA et al (2007) 18F-FLT PET does not discriminate between reactive and metastatic lymph nodes in primary head and neck cancer patients. J Nucl Med 48:726–735

    Article  PubMed  Google Scholar 

  35. Wieder HA, Geinitz H, Rosenberg R et al (2007) PET imaging with [(18)F]3′-deoxy-3′-fluorothymidine for prediction of response to neoadjuvant treatment in patients with rectal cancer. Eur J Nucl Med Mol Imaging 34:878–883

    Article  PubMed  CAS  Google Scholar 

  36. Kasper B, Egerer G, Gronkowski M et al (2007) Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk lymphoma 48:746–753

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the excellent contributions made by our colleague Petra Watzlowik PhD and the great support by our technical staff members Sybille Reder, Elisabeth Aywanger, and Brigitte Dzewas. This work was supported by “EMIL” (European Molecular Imaging Laboratories, grant LSHC-CT-2004-503569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Graf.

Additional information

Nicolas Graf and Ken Herrmann contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graf, N., Herrmann, K., den Hollander, J. et al. Imaging Proliferation to Monitor Early Response of Lymphoma to Cytotoxic Treatment. Mol Imaging Biol 10, 349–355 (2008). https://doi.org/10.1007/s11307-008-0162-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0162-3

Key words

Navigation