Skip to main content
Log in

Biomarker patterns of inflammatory and metabolic pathways are associated with risk of colorectal cancer: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)

  • CANCER
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

A number of biomarkers of inflammatory and metabolic pathways are individually related to higher risk of colorectal cancer (CRC); however, the association between biomarker patterns and CRC incidence has not been previously evaluated. Our study investigates the association of biomarker patterns with CRC in a prospective nested case–control study within the European Prospective Investigation into Cancer and Nutrition (EPIC). During median follow-up time of 7.0 (3.7–9.4) years, 1,260 incident CRC cases occurred and were matched to 1,260 controls using risk-set sampling. Pre-diagnostic measurements of C-peptide, glycated hemoglobin, triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), C-reactive protein (CRP), reactive oxygen metabolites (ROM), insulin-like growth factor 1, adiponectin, leptin and soluble leptin receptor (sOB-R) were used to derive biomarker patterns from principal component analysis (PCA). The relation with CRC incidence was assessed using conditional logistic regression models. We identified four biomarker patterns ‘HDL-C/Adiponectin fractions’, ‘ROM/CRP’, ‘TG/C-peptide’ and ‘leptin/sOB-R’ to explain 60 % of the overall biomarker variance. In multivariable-adjusted logistic regression, the ‘HDL-C/Adiponectin fractions’, ‘ROM/CRP’ and ‘leptin/sOB-R’ patterns were associated with CRC risk [for the highest quartile vs the lowest, incidence rate ratio (IRR) = 0.69, 95 % CI 0.51–0.93, P-trend = 0.01; IRR = 1.70, 95 % CI 1.30–2.23, P-trend = 0.002; and IRR = 0.79, 95 % CI 0.58–1.07; P-trend = 0.05, respectively]. In contrast, the ‘TG/C-peptide’ pattern was not associated with CRC risk (IRR = 0.75, 95 % CI 0.56–1.00, P-trend = 0.24). After cases within the first 2 follow-up years were excluded, the ‘ROM/CRP’ pattern was no longer associated with CRC risk, suggesting potential influence of preclinical disease on these associations. By application of PCA, the study identified ‘HDL-C/Adiponectin fractions’, ‘ROM/CRP’ and ‘leptin/sOB-R’ as biomarker patterns representing potentially important pathways for CRC development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917. doi:10.1002/ijc.25516.

    Article  CAS  PubMed  Google Scholar 

  2. Aleksandrova K, Nimptsch K, Pischon T. Influence of obesity and related metabolic alterations on colorectal cancer risk. Curr Nutr Rep. 2013;2(1):1–9. doi:10.1007/s13668-012-0036-9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Louie SM, Roberts LS, Nomura DK. Mechanisms linking obesity and cancer. Biochim Biophys Acta. 2013;1831(10):1499–508. doi:10.1016/j.bbalip.2013.02.008.

    Article  CAS  PubMed  Google Scholar 

  4. Bardou M, Barkun AN, Martel M. Obesity and colorectal cancer. Gut. 2013;62(6):933–47. doi:10.1136/gutjnl-2013-304701.

    Article  CAS  PubMed  Google Scholar 

  5. Hull M, Lagergren J. Obesity and colorectal cancer. Gut. 2013;. doi:10.1136/gutjnl-2013-304988.

    PubMed  Google Scholar 

  6. Jenab M, Riboli E, Cleveland RJ, et al. Serum C-peptide, IGFBP-1 and IGFBP-2 and risk of colon and rectal cancers in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2007;121(2):368–76. doi:10.1002/ijc.22697.

    Article  CAS  PubMed  Google Scholar 

  7. Otani T, Iwasaki M, Sasazuki S, Inoue M, Tsugane S, Japan Public Health Center-based Prospective Study Group. Plasma C-peptide, insulin-like growth factor-I, insulin-like growth factor binding proteins and risk of colorectal cancer in a nested case–control study: the Japan public health center-based prospective study. Int J Cancer. 2007;120(9):2007–12. doi:10.1002/ijc.22556.

    Article  CAS  PubMed  Google Scholar 

  8. Ma J, Giovannucci E, Pollak M, et al. A prospective study of plasma C-peptide and colorectal cancer risk in men. J Natl Cancer Inst. 2004;96(7):546–53.

    Article  CAS  PubMed  Google Scholar 

  9. Rinaldi S, Rohrmann S, Jenab M, et al. Glycosylated hemoglobin and risk of colorectal cancer in men and women, the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev. 2008;17(11):3108–15. doi:10.1158/1055-9965.EPI-08-0495.

    Article  CAS  PubMed  Google Scholar 

  10. Saydah SH, Platz EA, Rifai N, Pollak MN, Brancati FL, Helzlsouer KJ. Association of markers of insulin and glucose control with subsequent colorectal cancer risk. Cancer Epidemiol Biomarkers Prev. 2003;12(5):412–8.

    CAS  PubMed  Google Scholar 

  11. Aleksandrova K, Jenab M, Boeing H, et al. Circulating C-reactive protein concentrations and risks of colon and rectal cancer: a nested case–control study within the European Prospective Investigation into Cancer and Nutrition. Am J Epidemiol. 2010;172(4):407–18. doi:10.1093/aje/kwq135.

    Article  PubMed  Google Scholar 

  12. Tsilidis KK, Branchini C, Guallar E, Helzlsouer KJ, Erlinger TP, Platz EA. C-reactive protein and colorectal cancer risk: a systematic review of prospective studies. Int J Cancer. 2008;123(5):1133–40. doi:10.1002/ijc.23606.

    Article  CAS  PubMed  Google Scholar 

  13. Leufkens AM, van Duijnhoven FJ, Woudt SH, et al. Biomarkers of oxidative stress and risk of developing colorectal cancer: a cohort-nested case–control study in the European Prospective Investigation into Cancer and Nutrition. Am J Epidemiol. 2012;175(7):653–63. doi:10.1093/aje/kwr418.

    Article  PubMed  Google Scholar 

  14. van Duijnhoven FJ, Bueno-De-Mesquita HB, Calligaro M, et al. Blood lipid and lipoprotein concentrations and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition. Gut. 2011;60(8):1094–102. doi:10.1136/gut.2010.225011.

    Article  PubMed  Google Scholar 

  15. Jafri H, Alsheikh-Ali AA, Karas RH. Baseline and on-treatment high-density lipoprotein cholesterol and the risk of cancer in randomized controlled trials of lipid-altering therapy. J Am Coll Cardiol. 2010;55(25):2846–54. doi:10.1016/j.jacc.2009.12.069.

    Article  CAS  PubMed  Google Scholar 

  16. Lavigne PM, Jafri H, Karas R. High-density lipoprotein cholesterol and cancer incidence: data from the Framingham Heart Study. J Am Coll Cardiol. 2012;59(13s1):E1764. doi:10.1016/S0735-1097(12)61765-3.

    Article  Google Scholar 

  17. Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans. 2005;33(Pt 5):1078–81. doi:10.1042/BST20051078.

    CAS  PubMed  Google Scholar 

  18. Hauner H. Secretory factors from human adipose tissue and their functional role. Proc Nutr Soc. 2005;64(2):163–9.

    Article  CAS  PubMed  Google Scholar 

  19. Dalamaga M, Diakopoulos KN, Mantzoros CS. The role of adiponectin in cancer: a review of current evidence. Endocr Rev. 2012;33(4):547–94. doi:10.1210/er.2011-1015.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Piya MK, McTernan PG, Kumar S. Adipokine inflammation and insulin resistance: the role of glucose, lipids and endotoxin. J Endocrinol. 2013;216(1):T1–15. doi:10.1530/JOE-12-0498.

    Article  CAS  PubMed  Google Scholar 

  21. Aleksandrova K, Boeing H, Jenab M, et al. Leptin and soluble leptin receptor in risk of colorectal cancer in the European Prospective Investigation into Cancer and Nutrition cohort. Cancer Res. 2012;72(20):5328–37. doi:10.1158/0008-5472.CAN-12-0465.

    Article  CAS  PubMed  Google Scholar 

  22. Xu XT, Xu Q, Tong JL, et al. Meta-analysis: circulating adiponectin levels and risk of colorectal cancer and adenoma. J Dig Dis. 2011;12(4):234–44. doi:10.1111/j.1751-2980.2011.00504.x.

    Article  CAS  PubMed  Google Scholar 

  23. Perrier S, Jarde T. Adiponectin, an anti-carcinogenic hormone? A systematic review on breast, colorectal, liver and prostate cancer. Curr Med Chem. 2012;19(32):5501–12.

    Article  CAS  PubMed  Google Scholar 

  24. Aleksandrova K, Boeing H, Jenab M, et al. Total and high-molecular weight adiponectin and risk of colorectal cancer: the European Prospective Investigation into Cancer and Nutrition Study. Carcinogenesis. 2012;33(6):1211–8. doi:10.1093/carcin/bgs133.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Song M, Zhang X, Wu K, et al. Plasma adiponectin and soluble leptin receptor and risk of colorectal cancer: a prospective study. Cancer Prev Res. 2013;6(9):875–85. doi:10.1158/1940-6207.CAPR-13-0169.

    Article  CAS  Google Scholar 

  26. Neumeier M, Weigert J, Schaffler A, et al. Different effects of adiponectin isoforms in human monocytic cells. J Leukoc Biol. 2006;79(4):803–8. doi:10.1189/jlb.0905521.

    Article  CAS  PubMed  Google Scholar 

  27. Rinaldi S, Cleveland R, Norat T, et al. Serum levels of IGF-I, IGFBP-3 and colorectal cancer risk: results from the EPIC cohort, plus a meta-analysis of prospective studies. Int J Cancer. 2010;126(7):1702–15. doi:10.1002/ijc.24927.

    CAS  PubMed  Google Scholar 

  28. Chi F, Wu R, Zeng YC, Xing R, Liu Y. Circulation insulin-like growth factor peptides and colorectal cancer risk: an updated systematic review and meta-analysis. Mol Biol Rep. 2013;40(5):3583–90. doi:10.1007/s11033-012-2432-z.

    Article  CAS  PubMed  Google Scholar 

  29. Kaaks R, Toniolo P, Akhmedkhanov A, et al. Serum C-peptide, insulin-like growth factor (IGF)-I, IGF-binding proteins, and colorectal cancer risk in women. J Natl Cancer Inst. 2000;92(19):1592–600.

    Article  CAS  PubMed  Google Scholar 

  30. Mathews JD, Buckley JD, Gledhill VX. Pattern recognition in medicine—a place for the use of principal component analysis and factor analysis. Aust N Z J Med. 1974;4(5):509–15.

    Article  CAS  PubMed  Google Scholar 

  31. Hu FB. Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol. 2002;13(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  32. Jolliffe I. Principal component analysis. New York: Springer; 1986.

    Book  Google Scholar 

  33. Edwards KL, Austin MA, Newman B, Mayer E, Krauss RM, Selby JV. Multivariate analysis of the insulin resistance syndrome in women. Arterioscler Thromb. 1994;14(12):1940–5.

    Article  CAS  PubMed  Google Scholar 

  34. Dossus L, Lukanova A, Rinaldi S, et al. Hormonal, metabolic, and inflammatory profiles and endometrial cancer risk within the EPIC cohort—a factor analysis. Am J Epidemiol. 2013;177(8):787–99. doi:10.1093/aje/kws309.

    Article  PubMed  Google Scholar 

  35. Bingham S, Riboli E. Diet and cancer—the European Prospective Investigation into Cancer and Nutrition. Nat Rev Cancer. 2004;4(3):206–15. doi:10.1038/nrc1298nrc1298.

    Article  CAS  PubMed  Google Scholar 

  36. Slimani N, Deharveng G, Unwin I, et al. The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr. 2007;61(9):1037–56. doi:10.1038/sj.ejcn.1602679.

    Article  CAS  PubMed  Google Scholar 

  37. Kaaks R, Riboli E. Validation and calibration of dietary intake measurements in the EPIC project: methodological considerations. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol. 1997;26(Suppl 1):S15–25.

    Article  PubMed  Google Scholar 

  38. Haftenberger M, Lahmann PH, Panico S, et al. Overweight, obesity and fat distribution in 50- to 64-year-old participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr. 2002;5(6B):1147–62.

    Article  CAS  PubMed  Google Scholar 

  39. Sterne JA, White IR, Carlin JB, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393. doi:10.1136/bmj.b2393bmj.b2393.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Yuan Y. Multiple imputation using SAS software. J Stat Softw. 2011;45(6):1–25.

    Google Scholar 

  41. Riboli E, Hunt KJ, Slimani N, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6B):1113–24. doi:10.1079/PHN2002394S1368980002001350.

    Article  CAS  PubMed  Google Scholar 

  42. World Cancer Research Fund/American Institute for Cancer Research. Food nutrition, physical activity, and the prevention of cancer: a global perspective. Washington, DC: AICR; 2007.

    Google Scholar 

  43. Rohrmann S, Linseisen J, Becker S, et al. Concentrations of IGF-I and IGFBP-3 and brain tumor risk in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 2011;20(10):2174–82. doi:10.1158/1055-9965.EPI-11-0179.

    Article  CAS  PubMed  Google Scholar 

  44. Aleksandrova K, Boeing H, Jenab M, et al. Metabolic syndrome and risks of colon and rectal cancer: the European prospective investigation into cancer and nutrition study. Cancer Prev Res. 2011;4(11):1873–83. doi:10.1158/1940-6207.CAPR-11-0218.

    Article  CAS  Google Scholar 

  45. Rodrigues L, Kirkwood BR. Case–control designs in the study of common diseases: updates on the demise of the rare disease assumption and the choice of sampling scheme for controls. Int J Epidemiol. 1990;19(1):205–13.

    Article  CAS  PubMed  Google Scholar 

  46. Zietz B, Herfarth H, Paul G, et al. Adiponectin represents an independent cardiovascular risk factor predicting serum HDL-cholesterol levels in type 2 diabetes. FEBS Lett. 2003;545(2–3):103–4.

    Article  CAS  PubMed  Google Scholar 

  47. Altinova AE, Toruner F, Bukan N, et al. Decreased plasma adiponectin is associated with insulin resistance and HDL cholesterol in overweight subjects. Endocr J. 2007;54(2):221–6.

    Article  CAS  PubMed  Google Scholar 

  48. Van Linthout S, Foryst-Ludwig A, Spillmann F, et al. Impact of HDL on adipose tissue metabolism and adiponectin expression. Atherosclerosis. 2010;210(2):438–44. doi:10.1016/j.atherosclerosis.2010.01.001.

    Article  PubMed  Google Scholar 

  49. Kangas-Kontio T, Huotari A, Ruotsalainen H, et al. Genetic and environmental determinants of total and high-molecular weight adiponectin in families with low HDL-cholesterol and early onset coronary heart disease. Atherosclerosis. 2010;210(2):479–85. doi:10.1016/j.atherosclerosis.2009.12.022.

    Article  CAS  PubMed  Google Scholar 

  50. Belalcazar LM, Lang W, Haffner SM, et al. Adiponectin and the mediation of HDL-cholesterol change with improved lifestyle: the Look AHEAD Study. J Lipid Res. 2012;53(12):2726–33. doi:10.1194/jlr.M030213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. An W, Bai Y, Deng SX, et al. Adiponectin levels in patients with colorectal cancer and adenoma: a meta-analysis. Eur J Cancer Prev. 2012;21(2):126–33. doi:10.1097/CEJ.0b013e32834c9b55.

    Article  CAS  PubMed  Google Scholar 

  52. Moon HS, Liu X, Nagel JM, et al. Salutary effects of adiponectin on colon cancer: in vivo and in vitro studies in mice. Gut. 2013;62(4):561–70. doi:10.1136/gutjnl-2012-302092.

    Article  CAS  PubMed  Google Scholar 

  53. Per M. Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? Biomed Res Int. 2013;2013:9. doi:10.1155/2013/725710.

    Google Scholar 

  54. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radical Biol Med. 2010;49(11):1603–16. doi:10.1016/j.freeradbiomed.2010.09.006.

    Article  CAS  Google Scholar 

  55. Perse M. Oxidative stress in the pathogenesis of colorectal cancer: cause or consequence? Biomed Res Int. 2013;2013:725710. doi:10.1155/2013/725710.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Inokuma T, Haraguchi M, Fujita F, Tajima Y, Kanematsu T. Oxidative stress and tumor progression in colorectal cancer. Hepatogastroenterology. 2009;56(90):343–7.

    CAS  PubMed  Google Scholar 

  57. Chan JL, Bluher S, Yiannakouris N, Suchard MA, Kratzsch J, Mantzoros CS. Regulation of circulating soluble leptin receptor levels by gender, adiposity, sex steroids, and leptin: observational and interventional studies in humans. Diabetes. 2002;51(7):2105–12.

    Article  CAS  PubMed  Google Scholar 

  58. Sandhofer A, Laimer M, Ebenbichler CF, Kaser S, Paulweber B, Patsch JR. Soluble leptin receptor and soluble receptor-bound fraction of leptin in the metabolic syndrome. Obes Res. 2003;11(6):760–8. doi:10.1038/oby.2003.106.

    Article  CAS  PubMed  Google Scholar 

  59. Banu S, Jabir NR, Manjunath CN, Shakil S, Kamal MA. C-peptide and its correlation to parameters of insulin resistance in the metabolic syndrome. CNS Neurol Disord: Drug Targets. 2011;10(8):921–7.

    Article  CAS  Google Scholar 

  60. Kraegen EW, Cooney GJ, Ye J, Thompson AL. Triglycerides, fatty acids and insulin resistance–hyperinsulinemia. Exp Clin Endocrinol Diabetes. 2001;109(4):S516–26.

    Article  CAS  PubMed  Google Scholar 

  61. Ginsberg HN, Zhang YL, Hernandez-Ono A. Regulation of plasma triglycerides in insulin resistance and diabetes. Arch Med Res. 2005;36(3):232–40. doi:10.1016/j.arcmed.2005.01.005.

    Article  CAS  PubMed  Google Scholar 

  62. Kalofoutis C, Piperi C, Kalofoutis A, Harris F, Phoenix D, Singh J. Type II diabetes mellitus and cardiovascular risk factors: current therapeutic approaches. Exp Clin Cardiol. 2007;12(1):17–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Tsushima M, Nomura AM, Lee J, Stemmermann GN. Prospective study of the association of serum triglyceride and glucose with colorectal cancer. Dig Dis Sci. 2005;50(3):499–505.

    Article  PubMed  Google Scholar 

  64. Lee SA, Kallianpur A, Xiang YB, et al. Intra-individual variation of plasma adipokine levels and utility of single measurement of these biomarkers in population-based studies. Cancer Epidemiol Biomarkers Prev. 2007;16(11):2464–70. doi:10.1158/1055-9965.EPI-07-0374.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by World Cancer Research Fund International and Wereld Kanker Onderzoek Fonds (WCRF NL). The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by Danish Cancer Society (Denmark); Ligue contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); Hellenic Health Foundation (Greece); Italian Association for Research on Cancer (AIRC) and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); Health Research Fund (FIS), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society, Swedish Scientific Council and Regional Government of Skåne and Västerbotten (Sweden); Cancer Research UK, Medical Research Council, Stroke Association, British Heart Foundation, Department of Health, Food Standards Agency, and Wellcome Trust (United Kingdom). The funding sources had no influence on the design of the study; the collection, analysis, and interpretation of data; the writing of the report; or the decision to submit the paper for publication. The authors thank all EPIC participants and staff for their outstanding contribution to the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krasimira Aleksandrova.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrova, K., Jenab, M., Bueno-de-Mesquita, H.B. et al. Biomarker patterns of inflammatory and metabolic pathways are associated with risk of colorectal cancer: results from the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur J Epidemiol 29, 261–275 (2014). https://doi.org/10.1007/s10654-014-9901-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-014-9901-8

Keywords

Navigation