Skip to main content
Log in

Effects of the RANKL inhibitor, osteoprotegerin, on the pain and histopathology of bone cancer in rats

  • ORIGINAL PAPER
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Background

This study investigated the effects of the receptor activator for nuclear factor κB ligand (RANKL) inhibitor, osteoprotegerin (OPG), on tumor-induced allodynia, osteolysis, and bone histology in the mammary tumor (MRMT-1) rat model for bone cancer pain.

Methods

Rats (n = 8/group) were inoculated with MRMT-1 or culture medium in the proximal right tibia, injected with OPG or vehicle subcutaneously 2–3 times weekly, evaluated for mechanical allodynia with von Frey paw stimulation, and euthanized on Day 20 for necropsy. Three groups were evaluated starting on Day 5 and received the following interventions beginning on Day 1: tumor and OPG, tumor and vehicle, or culture medium and vehicle. Three additional groups received the same interventions but were evaluated starting on Day 3. A seventh group started OPG on Day 8 after tumor inoculation.

Results

Starting OPG on Day 1 reduced allodynia significantly compared with vehicle injections; pain relief was observed within 5–6 days after tumor inoculation and lasted throughout follow-up. Starting OPG on Day 8 did not reverse allodynia significantly compared with the tumor control group. Regardless of treatment start time, OPG treatment reduced osteoclast number and tartrate-resistant acid phosphatase levels, increased bone mineral density, preserved normal bone volume and integrity on micro-computed tomography, reduced relative tumor volume in the bone, and reduced staining for glial fibrillary acidic protein in the spinal cord.

Conclusions

RANKL inhibition with OPG reduced bone resorption and bone pain in rats with malignant bone disease; further study is warranted to determine if RANKL inhibition has similar benefits in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BMD:

Bone mineral density

DXA:

Dual X-ray absorptiometry

GFAP:

Glial fibrillary acidic protein

MicroCT:

Micro-computed tomography

MRMT-1:

Rat mammary tumor cell line

OPG:

Osteoprotegerin

RANK:

Receptor activator for nuclear factor κB

RANKL:

Receptor activator for nuclear factor κB ligand

sTRAP5b:

Tartrate-resistant acid phosphatase form 5b

References

  1. Rubens RD (1998) Bone metastases – the clinical problem. Eur J Cancer 34(2):210–213

    Article  PubMed  CAS  Google Scholar 

  2. Mercadante S (1997) Malignant bone pain: pathophysiology and treatment. Pain 69(1–2):1–18

    Article  PubMed  CAS  Google Scholar 

  3. Schwei MJ, Honore P, Rogers SD et al (1999) Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci 19(24):10886–10897

    PubMed  CAS  Google Scholar 

  4. Honore P, Rogers SD, Schwei MJ et al (2000) Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons. Neuroscience 98(3):585–598

    Article  PubMed  CAS  Google Scholar 

  5. Cain DM, Wacnik PW, Turner M et al (2001) Functional interactions between tumor and peripheral nerve: changes in excitability and morphology of primary afferent fibers in a murine model of cancer pain. J Neurosci 21(23):9367–9376

    PubMed  CAS  Google Scholar 

  6. Medhurst SJ, Walker K, Bowes M et al (2002) A rat model of bone cancer pain. Pain 96(1–2):129–140

    Article  PubMed  CAS  Google Scholar 

  7. Clohisy DR, Mantyh PW (2004) Bone cancer pain and the role of RANKL/OPG. J Musculoskelet Neuronal Interact 4(3):293–300

    PubMed  CAS  Google Scholar 

  8. Blair JM, Zhou H, Seibel MJ et al (2006) Mechanisms of disease: roles of OPG, RANKL and RANK in the pathophysiology of skeletal metastasis. Nat Clin Pract Oncol 3(1):41–49

    Article  PubMed  CAS  Google Scholar 

  9. Lacey DL, Timms E, Tan HL et al (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93(2):165–176

    Article  PubMed  CAS  Google Scholar 

  10. Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95(7):3597–3602

    Article  PubMed  CAS  Google Scholar 

  11. Burgess TL, Qian Y, Kaufman S et al (1999) The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol 145(3):527–538

    Article  PubMed  CAS  Google Scholar 

  12. Hsu H, Lacey DL, Dunstan CR et al (1999) Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 96(7):3540–3545

    Article  PubMed  CAS  Google Scholar 

  13. Kong YY, Yoshida H, Sarosi I et al (1999) OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph node organogenesis. Nature 397:315–323

    Article  PubMed  CAS  Google Scholar 

  14. Lacey DL, Tan HL, Lu J et al (2000) Osteoprotegerin ligand modulates murine osteoclast survival in vitro and in vivo. Am J Pathol 157(2):435–448

    PubMed  CAS  Google Scholar 

  15. Simonet WS, Lacey DL, Dunstan CR et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2):309–319

    Article  PubMed  CAS  Google Scholar 

  16. Udagawa N, Takahashi N, Yasuda H et al (2000) Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function. Endocrinology 141:3478–3484

    Article  PubMed  CAS  Google Scholar 

  17. Urch C (2004) The pathophysiology of cancer-induced bone pain: current understanding. Palliat Med 18(4):267–274

    Article  PubMed  Google Scholar 

  18. Lipton A, Ali SM, Leitzel K et al (2002) Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res 8(7):2306–2310

    PubMed  CAS  Google Scholar 

  19. Terpos E, Szydlo R, Apperley JF et al (2003) Soluble receptor activator of nuclear factor kappaB ligand–osteoprotegerin ratio predicts survival in multiple myeloma: proposal for a novel prognostic index. Blood 102(3):1064–1069

    Article  PubMed  CAS  Google Scholar 

  20. Grimaud E, Soubigou L, Couillaud S et al (2003) Receptor activator of nuclear factor kappaB ligand (RANKL)/osteoprotegerin (OPG) ratio is increased in severe osteolysis. Am J Pathol 163(5):2021–2031

    PubMed  CAS  Google Scholar 

  21. Capparelli C, Morony S, Warmington K et al (2003) Sustained antiresorptive effects after a single treatment with human recombinant osteoprotegerin (OPG): a pharmacodynamic and pharmacokinetic analysis in rats. J Bone Miner Res 18:852–858

    Article  PubMed  CAS  Google Scholar 

  22. Clohisy DR, Ramnaraine ML, Scully S et al (2000) Osteoprotegerin inhibits tumor-induced osteoclastogenesis and bone tumor growth in osteopetrotic mice. J Orthop Res 18(6):967–976

    Article  PubMed  CAS  Google Scholar 

  23. Morony S, Capparelli C, Sarosi I et al (2001) Osteoprotegerin inhibits osteolysis and decreases skeletal tumor burden in syngeneic and nude mouse models of experimental bone metastasis. Cancer Res 61(11):4432–4436

    PubMed  CAS  Google Scholar 

  24. Honore P, Luger NM, Sabino MA et al (2000) Osteoprotegerin blocks bone cancer-induced skeletal destruction, skeletal pain and pain-related neurochemical reorganization of the spinal cord. Nat Med 6(5):521–528

    Article  PubMed  CAS  Google Scholar 

  25. Luger NM, Honore P, Sabino MA et al (2001) Osteoprotegerin diminishes advanced bone cancer pain. Cancer Res 61(10):4038–4047

    PubMed  CAS  Google Scholar 

  26. Chaplan SR, Bach FW, Pogrel JW et al (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63

    Article  PubMed  CAS  Google Scholar 

  27. Olson TH, Riedl MS, Vulchanova L et al (1998) An acid sensing ion channel (ASIC) localizes to small primary afferent neurons in rats. Neuroreport 9(6):1109–1113

    PubMed  CAS  Google Scholar 

  28. Li Y, Kucuk O, Hussain M et al (2006) Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res 66(9):4816–4825

    Article  PubMed  CAS  Google Scholar 

  29. Body JJ, Facon T, Coleman RE et al (2006) A study of the biologic RANKL inhibitor, denosumab (AMG 162), in patients with multiple myeloma or bone metastases from breast cancer. Clin Cancer Res 12(4):1221–1228

    Article  PubMed  CAS  Google Scholar 

  30. Li EC, Davis LE (2003) Zoledronic acid: a new parenteral bisphosphonate. Clin Ther 25(11):2669–2708

    Article  PubMed  CAS  Google Scholar 

  31. Walker K, Medhurst SJ, Kidd BL et al (2002) Disease modifying and anti-nociceptive effects of the bisphosphonate, zoledronic acid in a model of bone cancer pain. Pain 100(3):219–229

    Article  PubMed  CAS  Google Scholar 

  32. Bonabello A, Galmozzi MR, Canaparo R et al (2003) Long-term analgesic effect of clodronate in rodents. Bone 33(4):567–574

    Article  PubMed  CAS  Google Scholar 

  33. Sevcik MA, Luger NM, Mach DB et al (2004) Bone cancer pain: the effects of the bisphosphonate alendronate on pain, skeletal remodeling, tumor growth and tumor necrosis. Pain 111(1–2):169–180

    Article  PubMed  CAS  Google Scholar 

  34. Goicoechea C, Porras E, Alfaro MJ et al (1999) Alendronate induces antinociception in mice, not related with its effects in bone. Jpn J Pharmacol 79(4):433–437

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Amgen, Inc. At the time of the study, William C. Dougall was an employee of Amgen, Inc., which is researching and developing an anti-RANKL monoclonal antibody for clinical use, and Martine Roudier and Steve Bain were employees of SkeleTech, Inc., which received a grant from Amgen, Inc. to perform the study. Chung Liu, Hellen Zheng, and Eric Bell provided technical assistance. Jonathan N. Latham and Christine Gatchalian provided editorial assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martine P. Roudier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roudier, M.P., Bain, S.D. & Dougall, W.C. Effects of the RANKL inhibitor, osteoprotegerin, on the pain and histopathology of bone cancer in rats. Clin Exp Metastasis 23, 167–175 (2006). https://doi.org/10.1007/s10585-006-9026-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9026-x

Keywords

Navigation