Skip to main content

Advertisement

Log in

Molecular biology of neuroendocrine tumors: from pathways to biomarkers and targets

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Neuroendocrine tumors (NETs) represent a heterogeneous group of diseases with varied natural history and prognosis depending upon the organ of origin and grade of aggressiveness. The most widely used biomarker to determine disease burden and monitor response to treatment is chromogranin A (CgA), but it is far from being the optimal predictive and prognostic biomarker in NETs. Biological understanding and derived treatment options for NETs have changed markedly in recent years. Over the last decade, the genomic landscape of these tumors has been extensively investigated. This has resulted in the discovery of mutations and expression anomalies in genes and pathways such as the PI3K/Akt/mTOR, DAXX/ATRX, and MEN1, which are promising predictive and prognostic biomarkers and future candidates for targeted therapies. Additionally, the study of tumor stroma and environment are one of the most promising fields for discovery of potential new targets and biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aaltonen, L.A., Hamilton, S.R., World Health Organization., International Agency for Research on Cancer. Pathology and genetics of tumours of the digestive system. Lyon Oxford: IARC Press; Oxford University Press; 2000.

  2. Rindi, G., Kloppel, G., Alhman, H., et al. (2006). TNM staging of foregut (neuro)endocrine tumors: a consensus proposal including a grading system. Virchows Archiv, 449, 395–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Rindi, G., Kloppel, G., Couvelard, A., et al. (2007). TNM staging of midgut and hindgut (neuro) endocrine tumors: a consensus proposal including a grading system. Virchows Archiv, 451, 757–762.

    Article  CAS  PubMed  Google Scholar 

  4. Kloppel, G., Rindi, G., Perren, A., Komminoth, P., & Klimstra, D. S. (2010). The ENETS and AJCC/UICC TNM classifications of the neuroendocrine tumors of the gastrointestinal tract and the pancreas: a statement. Virchows Archiv, 456, 595–597.

    Article  PubMed  Google Scholar 

  5. Bosman, F. T. (2010). World Health Organization, International Agency for Research on Cancer. WHO classification of tumours of the digestive system (4th ed.). Lyon: International Agency for Research on Cancer.

    Google Scholar 

  6. Rinke, A., Müller, H. H., Schade-Brittinger, C., et al. (2009). Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID study group. Journal of Clinical Oncology, 27, 4656–63.

    Article  CAS  PubMed  Google Scholar 

  7. Caplin, M., Ruszniewski, P., Pavel, M., et al. (2013). A randomized, double-blind, placebo-Controlled study of lanreotide antiproliferative response in patients with gastroenteropancreatic NeuroEndocrine Tumors (CLARINET). EJC 47 (Suppl.2): abstract 8961.

  8. Oberg, K. E., Casanovas, O., Castano, J. P., Chung, D., Dell Fave, G., Denèfle, P., et al. (2013). Molecular pathogenesis of neuroendocrine tumors: implications for current and future therapeutic approaches. Clinical Cancer Research, 19, 2842–2849.

    Article  CAS  PubMed  Google Scholar 

  9. Durán-Prado, M., Saveanu, A., Luque, R. M., et al. (2010). A potential inhibitory role for the new truncated variant of somatostatin receptor 5, sst5TMD4, in pituitary adenomas poorly responsive to somatostatin analogs. Journal of Clinical Endocrinology and Metabolism, 95, 2497–502.

    Article  PubMed  Google Scholar 

  10. Jones, S., Zhang, X., Parsons, D. W., et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science, 321, 1801–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. de Wilde, R. F., Edil, B. H., Hruban, R. H., & Maitra, A. (2012). Well-differentiated pancreatic neuroendocrine tumors: from genetics to therapy. Nature Reviews Gastroenterology & Hepatology, 9, 199–208.

    Article  Google Scholar 

  12. Corbo, V., Dalai, I., Scardoni, M., Barbi, S., Beghelli, S., Bersani, S., et al. (2010). MEN1 in pancreatic endocrine tumors: analysis of gene and protein status in 169 sporadic neoplasms reveals alterations in the vast majority of cases. Endocrine-Related Cancer, 17, 771–83.

    Article  CAS  PubMed  Google Scholar 

  13. Heaphy, C. M., de Wilde, R. F., Jiao, Y., et al. (2011). Altered telomeres in tumors with ATRX and DAXX mutations. Science, 333, 425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. de Wilde, R. F., Heaphy, C. M., Maitra, A., et al. (2012). Loss of ATRX or DAXX expression and concomitant acquisition of the alternative lengthening of telomeres phenotype are late events in a small subset of MEN-1 syndrome pancreatic neuroendocrine tumors. Modern Pathology, 25, 1033–9.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Cingarlini, S., Bonomi, M., Corbo, V., Scarpa, A., & Tortora, G. (2012). Profiling mTOR pathway in neuroendocrine tumors. Targeted Oncology, 7, 183–8.

    Article  CAS  PubMed  Google Scholar 

  16. Missiaglia, E., Dalai, I., Barbi, S., et al. (2010). Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. Journal of Clinical Oncology, 28, 245–55.

    Article  CAS  PubMed  Google Scholar 

  17. Yao, J. C., Shah, M. H., Ito, T., et al. (2011). Everolimus for advanced pancreatic neuroendocrine tumors. New England Journal of Medicine, 364, 514–23.

    Article  CAS  PubMed  Google Scholar 

  18. Yachida, S., Jones, S., Bozic, I., et al. (2010). Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Volinia, S., Calin, G. A., Liu, C. G., et al. (2006). A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 103, 2257–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Roldo, C., Missiaglia, E., Hagan, J. P., et al. (2006). MicroRNA expression abnormalities in pancreatic endocrine and acinar tumors are associated with distinctive pathologic features and clinical behavior. Journal of Clinical Oncology, 24, 4677–84.

    Article  CAS  PubMed  Google Scholar 

  21. Li, S. C., Essaghir, A., Martijn, C., Lloyd, R. V., Demoulin, J. B., Oberg, K., et al. (2013). Global microRNA profiling of well-differentiated small intestinal neuroendocrine tumors. Modern Pathology, 26, 685–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Modlin, I. M., et al. (2010). A nomogram to assess small-intestinal neuroendocrine tumor (‘carcinoid’) survival. Neuroendocrinology, 92, 143–157.

    Article  CAS  PubMed  Google Scholar 

  23. Vinik, E., Carlton, C. A., Silva, M. P., & Vinik, A. I. (2009). Development of the Norfolk quality of life tool for assessing patients with neuroendocrine tumors. Pancreas, 38, e87–95.

    Article  PubMed  Google Scholar 

  24. Taupenot, L., Harper, K. L., & O’Connor, D. T. (2003). The chromogranin-secretogranin family. New England Journal of Medicine, 348, 1134–1149.

    Article  CAS  PubMed  Google Scholar 

  25. Yao, J. C., Pavel, M., Phan, A. T., Kulke, M. H., Hoosen, S., St Peter, J., et al. (2011). Chromogranin a and neuron-specific enolase as prognostic markers in patients with advanced pNET treated with everolimus. Journal of Clinical Endocrinology and Metabolism, 96, 3741–3749.

    Article  CAS  PubMed  Google Scholar 

  26. Yao, J. C., Phan, A. T., Chang, D. Z., Wolf, R. A., Hess, K., Gupta, S., et al. (2008). Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. Journal of Clinical Oncology, 26, 4311–4318.

    Article  PubMed Central  PubMed  Google Scholar 

  27. Yao, J. C., Lombard-Dohas, C., Baudin, E., Kvols, L. K., Rougier, P., Ruszniwski, P., et al. (2010). Daily oral everolimus activity in patients with metastatic pancreatic neuroendocrine tumors after failure of cytotoxic chemotherapy: a phase II trial. Journal of Clinical Oncology, 28, 69–76.

    Article  CAS  PubMed  Google Scholar 

  28. Marotta, V., Nuzzo, V., Ferrara, T., Zuccoli, A., Masone, M., Nocerino, L., et al. (2012). Limitations of chromogranin A in clinical practice. Biomarkers, 17, 186–191.

    Article  CAS  PubMed  Google Scholar 

  29. Campana, D., et al. (2007). Chromogranin A: is it a useful marker of neuroendocrine tumors? Journal of Clinical Oncology, 25, 1967–1973.

    Article  CAS  PubMed  Google Scholar 

  30. Capdevila, J., & Tabernero, J. (2011). A shining light in the darkness for the treatment of pancreatic neuroendocrine tumors. Cancer Discovery, 1, 213–221.

    Article  CAS  PubMed  Google Scholar 

  31. Bello, C., et al. (2006). Analysis of circulating biomarkers of sunitinib maleate in patients with unresectable neuroendocrine tumors (NET): VEGF, IL-8, and soluble VEGF receptors 2 and 3. American Society of Clinical Oncology, 24, 4045.

    Google Scholar 

  32. Grande, E., Casanovas, O., Earl, J, et al. (2013). sVEGFR2 and circulating tumor cells to predict for the efficacy of pazopanib in neuroendocrine tumors (NETs): PAZONET subgroup analysis. J Clin Oncol 31; suppl: abstr 4140.

    Google Scholar 

  33. Raymond, E., et al. (2011). Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. New England Journal of Medicine, 364, 501–513.

    Article  CAS  PubMed  Google Scholar 

  34. Kulke, M. H., et al. (2009). O6-methylguanine DNA methyltransferase deficiency and response to temozolomide-based therapy in patients with neuroendocrine tumors. Clinical Cancer Research, 15, 338–345.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Modlin, I. M., et al. (2008). Gastroenteropancreatic neuroendocrine tumors. Lancet Oncology, 9, 61–72.

    Article  CAS  PubMed  Google Scholar 

  36. Cui, T., et al. (2010). Paraneoplastic antigen Ma2 autoantibodies as specific blood biomarkers for detection of early recurrence of small intestine neuroendocrine tumors. PLoS One, 5, e16010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Khan, M. S., et al. (2013). Circulating tumor cells as prognostic markers in neuroendocrine tumors. Journal of Clinical Oncology, 31, 365–372.

    Article  CAS  PubMed  Google Scholar 

  38. Chan, J. A., et al. (2012). Prospective study of bevacizumab plus temozolomide in patients with advanced neuroendocrine tumors. Journal of Clinical Oncology, 30, 2963–2968.

    Article  CAS  PubMed  Google Scholar 

  39. Raymond, E., et al. (2011). Sunitinib malate for the treatment of pancreatic neuroendocrine tumors. New England Journal of Medicine, 364, 501–513.

    Article  CAS  PubMed  Google Scholar 

  40. Pavel, M. E., et al. (2011). Everolimus plus octreotide long-acting repeatable for the treatment of advanced neuroendocrine tumors associated with carcinoid syndrome (RADIANT-2): a randomised, placebo-controlled, phase 3 study. Lancet, 378, 2005–2012.

    Article  CAS  PubMed  Google Scholar 

  41. Yao, J. C., et al. (2008). Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. Journal of Clinical Oncology, 26, 1316–1323.

    Article  CAS  PubMed  Google Scholar 

  42. Binderup, T., Knigge, U., Loft, A., Federspiel, B., & Kjaer, A. (2010). 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clinical Cancer Research, 16, 978–985.

    Article  CAS  PubMed  Google Scholar 

  43. Pietras, K., & Ostman, A. (2010). Hallmarks of cancer: interactions with the tumor stroma. Experimental Cell Research, 316, 1324–1331.

    Article  CAS  PubMed  Google Scholar 

  44. Hanahan, D. (1985). Heritable formation of pancreatic beta-cell tumors in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature, 315, 115–122.

    Article  CAS  PubMed  Google Scholar 

  45. Paez-Ribes, M., et al. (2009). Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell, 15, 220–231.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Chiu, C. W., Nozawa, H., & Hanahan, D. (2010). Survival benefit with proapoptotic molecular and pathologic responses from dual targeting of mammalian target of rapamycin and epidermal growth factor receptor in a preclinical model of pancreatic neuroendocrine carcinogenesis. Journal of Clinical Oncology, 28, 4425–4433.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Yao, J. C., et al. (2011). Everolimus for advanced pancreatic neuroendocrine tumors. New England Journal of Medicine, 364, 514–523.

    Article  CAS  PubMed  Google Scholar 

  48. Gerhardt, H., & Betsholtz, C. (2003). Endothelial-pericyte interactions in angiogenesis. Cell and Tissue Research, 314, 15–23.

    Article  PubMed  Google Scholar 

  49. Pietras, K., & Hanahan, D. A. (2005). Multitargeted, metronomic, and maximum-tolerated dose “chemo-switch” regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. Journal of Clinical Oncology, 23, 939–952.

    Article  CAS  PubMed  Google Scholar 

  50. Cunha, S. I., et al. (2010). Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. Journal of Experimental Medicine, 207, 85–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bellmunt, J., et al. (2010). Activity of a multitargeted chemo-switch regimen (sorafenib, gemcitabine, and metronomic capecitabine) in metastatic renal-cell carcinoma: a phase 2 study (SOGUG-02-06). Lancet Oncology, 11, 350–357.

    Article  CAS  PubMed  Google Scholar 

  52. Franco, M., Roswall, P., Cortez, E., Hanahan, D., & Pietras, K. (2011). Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood, 118, 2906–2917.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Franco, M., Paez-Ribes, M., Cortez, E., Casanovas, O., & Pietras, K. (2011). Use of a mouse model of pancreatic neuroendocrine tumors to find pericyte biomarkers of resistance to anti-angiogenic therapy. Hormone and Metabolic Research, 43, 884–889.

    Article  CAS  PubMed  Google Scholar 

  54. Cunha, S. I., & Pietras, K. (2011). ALK1 as an emerging target for antiangiogenic therapy of cancer. Blood, 117, 6999–7006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Capdevila.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capdevila, J., Meeker, A., García-Carbonero, R. et al. Molecular biology of neuroendocrine tumors: from pathways to biomarkers and targets. Cancer Metastasis Rev 33, 345–351 (2014). https://doi.org/10.1007/s10555-013-9468-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-013-9468-y

Keywords

Navigation