Skip to main content

Advertisement

Log in

Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Basal breast cancer, common among patients presenting with inflammatory breast cancer (IBC), has been shown to be resistant to radiation and enriched in cancer stem cells. The Notch pathway plays an important role in self-renewal of breast cancer stem cells and contributes to inflammatory signaling which promotes the breast cancer stem cell phenotype. Herein, we inhibited Notch signaling using a gamma secretase inhibitor, RO4929097, in an in vitro model that enriches for cancer initiating cells (3D clonogenic assay) and conventional 2D clonogenic assay to compare the effect on radiosensitization of the SUM149 and SUM190 IBC cell lines. RO4929097 downregulated the Notch target genes Hes1, Hey1, and HeyL, and showed a significant reduction in anchorage independent growth in SUM190 and SUM149. However, the putative self-renewal assay mammosphere formation efficiency was increased with the drug. To assess radiosensitization of putative cancer stem cells, cells were exposed to increasing doses of radiation with or without 1 μM RO4929097 in their standard (2D) and self-renewal enriching (3D) culture conditions. In the conventional 2D clonogenic assay, RO4929097 significantly sensitized SUM190 cells to ionizing radiation and has a modest radiosensitization effect in SUM149 cells. In the 3D clonogenic assays, however, a radioprotective effect was seen in both SUM149 and SUM190 cells at higher doses. Both cell lines express IL-6 and IL-8 cytokines known to mediate the efficacy of Notch inhibition and to promote self-renewal of stem cells. We further showed that RO429097 inhibits normal T-cell synthesis of some inflammatory cytokines, including TNF-α, a potential mediator of IL-6 and IL-8 production in the microenvironment. These data suggest that additional targeting agents may be required to selectively target IBC stem cells through Notch inhibition, and that evaluation of microenvironmental influences may shed further light on the potential effects of this inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li F, Tiede B, Massague J, Kang Y (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14

    Article  PubMed  CAS  Google Scholar 

  2. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    Article  PubMed  Google Scholar 

  3. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890 (discussion 1895–1886)

    Article  PubMed  CAS  Google Scholar 

  4. Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104:618–623

    Article  PubMed  CAS  Google Scholar 

  5. Fillmore CM, Kuperwasser C (2008) Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res 10:R25

    Article  PubMed  Google Scholar 

  6. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679

    Article  PubMed  CAS  Google Scholar 

  7. Balic M, Lin H, Young L, Hawes D, Giuliano A, McNamara G, Datar RH, Cote RJ (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621

    Article  PubMed  CAS  Google Scholar 

  8. Reuben JM, Lee BN, Gao H, Cohen EN, Mego M, Giordano A, Wang X, Lodhi A, Krishnamurthy S, Hortobagyi GN et al (2011) Primary breast cancer patients with high risk clinicopathologic features have high percentages of bone marrow epithelial cells with ALDH activity and CD44(+)CD24(lo) cancer stem cell phenotype. Eur J Cancer 47(10):1527–1536

    Article  PubMed  CAS  Google Scholar 

  9. Woodward WA, Gao H, Cohen EN, Li L, Xu W, Debeb BG, Jimenez CA, Krishnamurthy S, Tucker SL, Hortobagyi G, Cristofanilli M, Buchholz T, Reuben J (2011) Percentage of CD45CD326+ CD44+CD24−/lo cells in pleural effusion fluid of patients with metastatic breast cancer predicts for overall survival. Interv Oncol Soc J 1(1):4–10

    Google Scholar 

  10. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    Article  PubMed  CAS  Google Scholar 

  11. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  PubMed  CAS  Google Scholar 

  12. Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, Wicha MS (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17:1253–1270

    Article  PubMed  CAS  Google Scholar 

  13. Robertson FM, Bondy M, Yang W, Yamauchi H, Wiggins S, Kamrudin S, Krishnamurthy S, Le-Petross H, Bidaut L, Player AN et al (2010) Inflammatory breast cancer: the disease, the biology, the treatment. CA Cancer J Clin 60:351–375

    Article  PubMed  Google Scholar 

  14. Xiao Y, Ye Y, Yearsley K, Jones S, Barsky SH (2008) The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol 173:561–574

    Article  PubMed  CAS  Google Scholar 

  15. Xiao Y, Ye Y, Zou X, Jones S, Yearsley K, Shetuni B, Tellez J, Barsky SH (2011) The lymphovascular embolus of inflammatory breast cancer exhibits a Notch 3 addiction. Oncogene 30:287–300

    Article  PubMed  CAS  Google Scholar 

  16. Charafe-Jauffret E, Ginestier C, Iovino F, Wicinski J, Cervera N, Finetti P, Hur MH, Diebel ME, Monville F, Dutcher J et al (2009) Breast cancer cell lines contain functional cancer stem cells with metastatic capacity and a distinct molecular signature. Cancer Res 69:1302–1313

    Article  PubMed  CAS  Google Scholar 

  17. Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16:45–55

    Article  PubMed  CAS  Google Scholar 

  18. Kakarala M, Wicha MS (2008) Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26:2813–2820

    Article  PubMed  Google Scholar 

  19. Radtke F, Schweisguth F, Pear W (2005) The Notch ‘gospel’. EMBO Rep 6:1120–1125

    Article  PubMed  CAS  Google Scholar 

  20. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–R615

    Article  PubMed  CAS  Google Scholar 

  21. Harrison H, Farnie G, Howell SJ, Rock RE, Stylianou S, Brennan KR, Bundred NJ, Clarke RB (2010) Regulation of breast cancer stem cell activity by signaling through the Notch4 receptor. Cancer Res 70:709–718

    Article  PubMed  CAS  Google Scholar 

  22. Grudzien P, Lo S, Albain KS, Robinson P, Rajan P, Strack PR, Golde TE, Miele L, Foreman KE (2010) Inhibition of Notch signaling reduces the stem-like population of breast cancer cells and prevents mammosphere formation. Anticancer Res 30:3853–3867

    PubMed  CAS  Google Scholar 

  23. Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Investig 121:3804–3809

    Article  PubMed  CAS  Google Scholar 

  24. Patel SA, Dave MA, Murthy RG, Helmy KY, Rameshwar P (2011) Metastatic breast cancer cells in the bone marrow microenvironment: novel insights into oncoprotection. Oncol Rev 5:93–102

    Article  PubMed  Google Scholar 

  25. Shiao SL, Ganesan AP, Rugo HS, Coussens LM (2011) Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 25:2559–2572

    Article  PubMed  CAS  Google Scholar 

  26. Guise T (2010) Examining the metastatic niche: targeting the microenvironment. Semin Oncol 37(Suppl 2):S2–S14

    Article  PubMed  CAS  Google Scholar 

  27. Johansson M, Denardo DG, Coussens LM (2008) Polarized immune responses differentially regulate cancer development. Immunol Rev 222:145–154

    Article  PubMed  CAS  Google Scholar 

  28. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG et al (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71:614–624

    Article  PubMed  CAS  Google Scholar 

  29. Storci G, Sansone P, Mari S, D’Uva G, Tavolari S, Guarnieri T, Taffurelli M, Ceccarelli C, Santini D, Chieco P et al (2010) TNFalpha up-regulates SLUG via the NF-kappaB/HIF1alpha axis, which imparts breast cancer cells with a stem cell-like phenotype. J Cell Physiol 225:682–691

    Article  PubMed  CAS  Google Scholar 

  30. Sun J, Krawczyk CJ, Pearce EJ (2008) Suppression of Th2 cell development by Notch ligands delta1 and delta4. J Immunol 180:1655–1661

    PubMed  CAS  Google Scholar 

  31. Kubo M (2007) Notch: filling a hole in T helper 2 cell differentiation. Immunity 27:3–5

    Article  PubMed  CAS  Google Scholar 

  32. Amsen D, Blander JM, Lee GR, Tanigaki K, Honjo T, Flavell RA (2004) Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117:515–526

    Article  PubMed  CAS  Google Scholar 

  33. Pei J, Tang Z, Zang G, Yu Y (2010) Blockage of Notch1 signaling modulates the T-helper (Th)1/Th2 cell balance in chronic hepatitis B patients. Hepatol Res 40:799–805

    Article  PubMed  CAS  Google Scholar 

  34. Ogawa H, Mukai K, Kawano Y, Minegishi Y, Karasuyama H (2012) Th2-inducing cytokines IL-4 and IL-33 synergistically elicit the expression of transmembrane TNF-alpha on macrophages through the autocrine action of IL-6. Biochem Biophys Res Commun 420:114–118

    Article  PubMed  CAS  Google Scholar 

  35. Amsen D, Spilianakis CG, Flavell RA (2009) How are T(H)1 and T(H)2 effector cells made? Curr Opin Immunol 21:153–160

    Article  PubMed  CAS  Google Scholar 

  36. Yuan JS, Kousis PC, Suliman S, Visan I, Guidos CJ (2010) Functions of notch signaling in the immune system: consensus and controversies. Annu Rev Immunol 28:343–365

    Article  PubMed  Google Scholar 

  37. Luistro L, He W, Smith M, Packman K, Vilenchik M, Carvajal D, Roberts J, Cai J, Berkofsky-Fessler W, Hilton H et al (2009) Preclinical profile of a potent gamma-secretase inhibitor targeting notch signaling with in vivo efficacy and pharmacodynamic properties. Cancer Res 69:7672–7680

    Article  PubMed  CAS  Google Scholar 

  38. He W, Luistro L, Carvajal D, Smith M, Nevins T, Yin X, Cai J, Higgins B, Kolinsky K, Rizzo C et al (2011) High tumor levels of IL6 and IL8 abrogate preclinical efficacy of the gamma-secretase inhibitor, RO4929097. Mol Oncol 5(3):292–301

    Article  PubMed  CAS  Google Scholar 

  39. Debeb BG, Xu W, Mok H, Li L, Robertson F, Ueno NT, Reuben J, Lucci A, Cristofanilli M, Woodward WA (2010) Differential radiosensitizing effect of valproic acid in differentiation versus self-renewal promoting culture conditions. Int J Radiat Oncol Biol Phys 76:889–895

    Article  PubMed  CAS  Google Scholar 

  40. Reuben JM, Lee BN, Li C, Gomez-Navarro J, Bozon VA, Parker CA, Hernandez IM, Gutierrez C, Lopez-Berestein G, Camacho LH (2006) Biologic and immunomodulatory events after CTLA-4 blockade with ticilimumab in patients with advanced malignant melanoma. Cancer 106:2437–2444

    Article  PubMed  CAS  Google Scholar 

  41. Gao H, Lee BN, Talpaz M, Donato NJ, Cortes JE, Kantarjian HM, Reuben JM (2005) Imatinib mesylate suppresses cytokine synthesis by activated CD4 T cells of patients with chronic myelogenous leukemia. Leukemia 19:1905–1911

    Article  PubMed  CAS  Google Scholar 

  42. Villiger PM, Cronin MT, Amenomori T, Wachsman W, Lotz M (1991) IL-6 production by human T lymphocytes. Expression in HTLV-1-infected but not in normal T cells. J Immunol 146:550–559

    PubMed  CAS  Google Scholar 

  43. Chen JQ, Russo J (2009) ERalpha-negative and triple negative breast cancer: molecular features and potential therapeutic approaches. Biochim Biophys Acta 1796:162–175

    PubMed  CAS  Google Scholar 

  44. Buonamici S, Trimarchi T, Ruocco MG, Reavie L, Cathelin S, Mar BG, Klinakis A, Lukyanov Y, Tseng JC, Sen F et al (2009) CCR7 signalling as an essential regulator of CNS infiltration in T-cell leukaemia. Nature 459:1000–1004

    Article  PubMed  CAS  Google Scholar 

  45. Rao GS, Murray S, Ethier SP (2000) Radiosensitization of human breast cancer cells by a novel ErbB family receptor tyrosine kinase inhibitor. Int J Radiat Oncol Biol Phys 48:1519–1528

    Article  PubMed  CAS  Google Scholar 

  46. Woodward WA, Debeb BG, Xu W, Buchholz TA (2010) Overcoming radiation resistance in inflammatory breast cancer. Cancer 116:2840–2845

    Article  PubMed  Google Scholar 

  47. Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR, Lindeman GJ, Visvader JE (2008) Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3:429–441

    Article  PubMed  CAS  Google Scholar 

  48. Kwon C, Cheng P, King IN, Andersen P, Shenje L, Nigam V, Srivastava D (2011) Notch post-translationally regulates beta-catenin protein in stem and progenitor cells. Nat Cell Biol 13(10):1244–1251

    Article  PubMed  CAS  Google Scholar 

  49. Kwon C, Qian L, Cheng P, Nigam V, Arnold J, Srivastava D (2009) A regulatory pathway involving Notch1/beta-catenin/Isl1 determines cardiac progenitor cell fate. Nat Cell Biol 11:951–957

    Article  PubMed  CAS  Google Scholar 

  50. Sansone P, Storci G, Tavolari S, Guarnieri T, Giovannini C, Taffurelli M, Ceccarelli C, Santini D, Paterini P, Marcu KB et al (2007) IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117:3988–4002

    Article  PubMed  CAS  Google Scholar 

  51. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE (2008) Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE 3:e3077

    Article  PubMed  Google Scholar 

  52. Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L, Karin M (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113

    Article  PubMed  CAS  Google Scholar 

  53. Efimova EV, Liang H, Pitroda SP, Labay E, Darga TE, Levina V, Lokshin A, Roizman B, Weichselbaum RR, Khodarev NN (2009) Radioresistance of Stat1 over-expressing tumour cells is associated with suppressed apoptotic response to cytotoxic agents and increased IL6-IL8 signalling. Int J Radiat Biol 85:421–431

    Article  PubMed  CAS  Google Scholar 

  54. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci USA 108:1397–1402

    Article  PubMed  CAS  Google Scholar 

  55. Cohen EN, Lee BN, Gao H, Andreopoulou E, Jackson SA, Parker CA, Tin S, Li Y-D, Galland MM, Cristofanilli M, Reuben JM (2009) Soluble factors and circulating tumor cells in inflammatory breast cancer. Cancer Res 69(24 Suppl): Abstract nr 2135

    Google Scholar 

  56. Van Laere S, Van der Auwera I, Van den Eynden GG, Fox SB, Bianchi F, Harris AL, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY (2005) Distinct molecular signature of inflammatory breast cancer by cDNA microarray analysis. Breast Cancer Res Treat 93:237–246

    Article  PubMed  CAS  Google Scholar 

  57. Van Laere SJ, Van der Auwera I, Van den Eynden GG, Elst HJ, Weyler J, Harris AL, van Dam P, Van Marck EA, Vermeulen PB, Dirix LY (2006) Nuclear factor-kappaB signature of inflammatory breast cancer by cDNA microarray validated by quantitative real-time reverse transcription-PCR, immunohistochemistry, and nuclear factor-kappaB DNA-binding. Clin Cancer Res 12:3249–3256

    Article  PubMed  Google Scholar 

  58. Murugan V, Peck MJ (2009) Signal transduction pathways linking the activation of alveolar macrophages with the recruitment of neutrophils to lungs in chronic obstructive pulmonary disease. Exp Lung Res 35:439–485

    Article  PubMed  CAS  Google Scholar 

  59. Strieter RM, Kunkel SL, Bone RC (1993) Role of tumor necrosis factor-alpha in disease states and inflammation. Crit Care Med 21:S447–S463

    Article  PubMed  CAS  Google Scholar 

  60. Naing A, Reuben JM, Camacho LH, Gao H, Lee BN, Cohen EN, Verschraegen C, Stephen S, Aaron J, Hong D et al (2011) Phase I dose escalation study of sodium stibogluconate (SSG), a protein tyrosine phosphatase inhibitor, combined with interferon alpha for patients with solid tumors. J Cancer 2:81–89

    Article  PubMed  CAS  Google Scholar 

  61. Amsen D, Antov A, Jankovic D, Sher A, Radtke F, Souabni A, Busslinger M, McCright B, Gridley T, Flavell RA (2007) Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27:89–99

    Article  PubMed  CAS  Google Scholar 

  62. Minter LM, Turley DM, Das P, Shin HM, Joshi I, Lawlor RG, Cho OH, Palaga T, Gottipati S, Telfer JC et al (2005) Inhibitors of gamma-secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nat Immunol 6:680–688

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The small molecule inhibitor RO4929097 was kindly provided by Dr. John Boylan of Roche Pharmaceuticals. This work was supported by grants from the National Institute of Health R01CA138239-01; the State of Texas Grant for Rare and Aggressive Cancers; the University of Texas MD Anderson Cancer Center Institutional Research Grant; the University of Texas Health Sciences Center KL2 RR024149 and Susan G. Komen Breast Cancer Foundation Grant KG081287; Assessment of Circulating Breast Cancer Stem Cells To Predict Recurrent Disease, W81XWH-09-1-0031 01, DOD.

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy A. Woodward.

Additional information

Bisrat G. Debeb and Evan N. Cohen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debeb, B.G., Cohen, E.N., Boley, K. et al. Pre-clinical studies of Notch signaling inhibitor RO4929097 in inflammatory breast cancer cells. Breast Cancer Res Treat 134, 495–510 (2012). https://doi.org/10.1007/s10549-012-2075-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-012-2075-8

Keywords

Navigation