Skip to main content

Advertisement

Log in

Comparison of sonoelastography guided biopsy with systematic biopsy: impact on prostate cancer detection

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

A prospective study was performed to determine the value of sonoelastography (SE) targeted biopsy for prostate cancer (PCa) detection. A series of 230 male screening volunteers was examined. Two independent examiners evaluated each subject. One single investigator performed ≤5 SE targeted biopsies into suspicious regions in the peripheral zone only. The stiffness of the lesion was displayed by SE and color-coded from red (soft) to blue (hard). Hard lesions were considered as malignant and targeted by biopsy. Subsequently, another examiner performed ten systematic biopsies. Cancer detection rates of the two techniques were compared. Cancer was detected in 81 of the 230 patients (35%), including 68 (30%) by SE targeted biopsy and in 58 (25%) by systematic biopsy. Cancer was detected by targeted biopsy alone in 23 patients (10%) and by systematic biopsy alone in 13 patients (6%). The detection rate for SE targeted biopsy cores (12.7% or 135 of 1,109 cores) was significantly better than for systematic biopsy cores (5.6% or 130 of 2,300 cores, P < 0.001). SE targeted biopsy in a patient with cancer was 2.9-fold more likely to detect PCa than systematic biopsy. SE targeted biopsy detected more cases of PCa than systematic biopsy, with fewer than half the number of biopsy cores in this prostate-specific antigen screening population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halpern EJ, Frauscher F, Rosenberg M, Gomella LG (2002) Directed biopsy during contrast-enhanced sonography of the prostate. AJR Am J Roentgenol 178:915–919

    PubMed  Google Scholar 

  2. Frauscher F, Klauser A, Halpern EJ, Horninger W, Bartsch G (2001) Detection of prostate cancer with a microbubble ultrasound contrast agent. Lancet 357:1849–1850

    Article  PubMed  CAS  Google Scholar 

  3. Krouskop TA, Wheeler TM, Kallel F, Garra BS, Hall T (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20:260–274

    PubMed  CAS  Google Scholar 

  4. Sedelaar JP, Vijverberg PL, De Reijke TM et al (2001) Transrectal ultrasound in the diagnosis of prostate cancer: state of the art and perspectives. Eur Urol 40:275–284

    Article  PubMed  CAS  Google Scholar 

  5. Ophir J, Cespedes I, Ponnekanti H, Yazdi Y, Li X (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134

    Article  PubMed  CAS  Google Scholar 

  6. Ophir J, Miller RK, Ponnekanti H, Cespedes I, Whittaker AD (1994) Elastography of beef muscle. Meat Sci 36:239–250

    Article  Google Scholar 

  7. Pesavento A, Perry C, Krueger M, Ermert H (1999) A time efficient and accurate strain estimation concept for ultrasonic elastography using interactive phase zero estimation. IEEE Trans Ultrason Ferroelect Freq Control 46:1057–1067

    Article  CAS  Google Scholar 

  8. Konig K, Scheipers U, Pesavento A, Lorenz A, Ermert H, Senge T (2005) Initial experiences with real-time elastography guided biopsies of the prostate. J Urol 174:115–117

    Article  PubMed  Google Scholar 

  9. Cochlin DL, Ganatra RH, Griffiths DF (2002) Elastography in the detection of prostatic cancer. Clin Radiol 57:1014–1020

    Article  PubMed  Google Scholar 

  10. Frauscher F, Klauser A, Volgger H et al (2002) Comparison of contrast enhanced color Doppler targeted biopsy with conventional systematic biopsy: impact on prostate cancer detection. J Urol 167:1648–1652

    Article  PubMed  Google Scholar 

  11. Frey H (2003) Realtime elastography. A new ultrasound procedure for the reconstruction of tissue elasticity. Radiologe 43:850–855

    Article  PubMed  CAS  Google Scholar 

  12. Shiina T, Doyley MM, Bamber JC (1996) Strain imaging using combined RF and envelope autocorrelation processing. Proc IEEE Ultrason Symp 4:1331–1336

    Google Scholar 

  13. Skovoroda AR, Agliamov SR (1995) Reconstruction of elastic properties of soft biological tissues exposed to low frequency disruption. Biofizika 40:1329–1334

    PubMed  CAS  Google Scholar 

  14. Konofagou EE, Ophir J, Kallel F, Varghese T (1997) Elastographic dynamic range expansion using variable applied strains. Ultrason Imaging 19:145–166

    PubMed  CAS  Google Scholar 

  15. Pelzer AE, Bektic J, Berger AP et al (2005) Are transition zone biopsies still necessary to improve prostate cancer detection? Results from the tyrol screening project. Eur Urol 48:916–921

    Article  PubMed  Google Scholar 

  16. Dhingsa R, Qayyum A, Coakley FV et al (2004) Prostate cancer localization with endorectal MR imaging and MR spectroscopic imaging: effect of clinical data on reader accuracy. Radiology 230:215–220

    Article  PubMed  Google Scholar 

  17. Halpern EJ, Strup SE (2000) Using gray-scale and color and power Doppler sonography to detect prostatic cancer. AJR Am J Roentgenol 174:623–627

    PubMed  CAS  Google Scholar 

  18. Chen ME, Troncoso P, Johnston DA, Tang K, Babaian RJ (1997) Optimization of prostate biopsy strategy using computer based analysis. J Urol 158:2168–2175

    Article  PubMed  CAS  Google Scholar 

  19. Motulsky H (1995) Intuitive Biostatistics. Oxford University Press, New York, p 129

    Google Scholar 

  20. Norberg M, Egevad L, Holmberg L, Sparen P, Norlen BJ, Busch C (1997) The sextant protocol for ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology 50:562–566

    Article  PubMed  CAS  Google Scholar 

  21. Jones JS, Patel A, Schoenfield L, Rabets JC, Zippe CD, Magi-Galluzzi C (2006) Saturation technique does not improve cancer detection as an initial prostate biopsy strategy. J Urol 175:485–488

    Article  PubMed  Google Scholar 

  22. Naughton CK, Miller DC, Mager DE, Ornstein DK, Catalona WJ (2000) A prospective randomized trial comparing 6 versus 12 prostate biopsy cores: impact on cancer detection. J Urol 164:388–392

    Article  PubMed  CAS  Google Scholar 

  23. Fleshner NE, O’Sullivan M, Premdass C, Fair WR (1999) Clinical significance of small (less than 0.2 cm3) hypoechoic lesions in men with normal digital rectal examinations and prostate specific antigen levels less than 10 ng/mL. Urology 53:356–358

    Article  PubMed  CAS  Google Scholar 

  24. Heijmink SWTPJ, van Moerkerk H, Kiemeney LALM, Witjes JA, Frauscher F, Barentsz JO (2006) A comparison of the diagnostic performance of systematic versus ultrasound-guided biopsies of prostate cancer. Eur Radiol 16:927–938

    Article  PubMed  Google Scholar 

  25. Horninger W, Reissigl A, Fink K et al (1998) Results of a prospective randomized study comparing the prostate cancer detection rates in PSA screening volunteers undergoing 10 vs. 14 transrectal ultrasound guided biopsies. J Urol 159(Suppl):180, (abstract 690)

    Google Scholar 

  26. Ermert H (2002) The Ruhr Center of Competence for Medical Engineering (Kompetenzzentrum Medizintechnik Ruhr KMR, Bochum). Biomed Tech (Berl) 47(Suppl 1, Pt 2):886–889

    Article  Google Scholar 

  27. Lyshchik A, Higashi T, Asato R et al (2005) Thyroid gland tumor diagnosis at US elastography. Radiology 237:202–211

    Article  PubMed  Google Scholar 

  28. Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350

    Article  PubMed  Google Scholar 

  29. Sperandeo G, Sperandeo M, Morcaldi M, Caturelli E, Dimitri L, Camagna A (2003) Transrectal ultrasonography for the early diagnosis of adenocarcinoma of the prostate: a new maneuver designed to improve the differentiation of malignant and benign lesions. J Urol 169:607–610

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo Pallwein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallwein, L., Mitterberger, M., Struve, P. et al. Comparison of sonoelastography guided biopsy with systematic biopsy: impact on prostate cancer detection. Eur Radiol 17, 2278–2285 (2007). https://doi.org/10.1007/s00330-007-0606-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-007-0606-1

Keywords

Navigation