Skip to main content
Log in

Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix

  • Urogenital
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

A relation between apparent diffusion coefficient (ADC) values and tumor cellular density has been reported. The purpose of this study was to measure the ADC values of cervical cancers in the uterus and compare them with those of normal cervical tissues, and to test whether ADC could differentiate between normal and malignant cervical tissues in the uterus. Twelve consecutive female patients with cervical cancer of the uterus and ten female patients with other pelvic abnormalities were included in this study. ADC was measured at 1.5 T with b-factors of 0, 300 and 600 s/mm2 using single-shot echo-planar diffusion-weighted imaging and a parallel imaging technique. The mean ADC value of cervical cancer lesions was 1.09±0.20×10−3 mm2/s, and that of normal cervix tissue was 1.79±0.24×10−3 mm2/s (P<0.0001). In nine patients treated by chemotherapy and/or radiation therapy, the mean ADC value of the cervical cancer lesion increased significantly after therapy (P<0.001). The present study showed, with a small number of patients, that ADC measurement has a potential ability to differentiate between normal and cancerous tissue in the uterine cervix. Further study is necessary to determine the accuracy of ADC measurement in monitoring the treatment response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sorensen AG, Wu O, Copen WA, Davis TL, Gonzalez RG, Koroshetz WJ et al (1999) Human acute cerebral ischemia: detection of changes in water diffusion anisotropy by using MR imaging. Radiology 212(3):785–792

    CAS  PubMed  Google Scholar 

  2. Weber J, Mattle HP, Heid O, Remonda L, Schroth G (2000) Diffusion-weighted imaging in ischaemic stroke: a follow-up study. Neuroradiology 42(3):184–191

    Article  CAS  PubMed  Google Scholar 

  3. Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217(2):331–345

    CAS  PubMed  Google Scholar 

  4. Chun T, Filippi CG, Zimmerman RD, Ulug AM (2000) Diffusion changes in the aging human brain. Am J Neuroradiol 21(6):1078–1083

    CAS  PubMed  Google Scholar 

  5. Eastwood JD, Fiorella DJ, MacFall JF, Delong DM, Provenzale JM, Greenwood RS (2001) Increased brain apparent diffusion coefficient in children with neurofibromatosis type 1. Radiology 219(2):354–358

    CAS  PubMed  Google Scholar 

  6. Kantarci K, Jack CR Jr, Xu YC, Campeau NG, O’Brien PC, Smith GE et al (2001) Mild cognitive impairment and Alzheimer disease: regional diffusivity of water. Radiology 219(1):101–107

    CAS  PubMed  Google Scholar 

  7. Naganawa S, Sato K, Katagiri T, Mimura T, Ishigaki T (2003) Regional ADC values of the normal brain: differences due to age, gender, and laterality. Eur Radiol 13(1):6–11

    PubMed  Google Scholar 

  8. Steens SC, Admiraal-Behloul F, Schaap JA, Hoogenraad FG, Wheeler-Kingshott CA, le Cessie S et al (2004) Reproducibility of brain ADC histograms. Eur Radiol 14(3):425–430

    Article  PubMed  Google Scholar 

  9. Castillo M, Smith JK, Kwock L, Wilber K (2001) Apparent diffusion coefficients in the evaluation of high-grade cerebral gliomas. Am J Neuroradiol 22(1):60–64

    CAS  PubMed  Google Scholar 

  10. Lyng H, Haraldseth O, Rofstad EK (2000) Measurement of cell density and necrotic fraction in human melanoma xenografts by diffusion weighted magnetic resonance imaging. Magn Reson Med 43(6):828–836

    Article  CAS  PubMed  Google Scholar 

  11. Anderson AW, Xie J, Pizzonia J, Bronen RA, Spencer DD, Gore JC (2000) Effects of cell volume fraction changes on apparent diffusion in human cells. Magn Reson Imaging 18(6):689–695

    Article  CAS  PubMed  Google Scholar 

  12. Englander SA, Ulug AM, Brem R, Glickson JD, van Zijl PC (1997) Diffusion imaging of human breast. NMR Biomed 10(7):348–352

    Article  CAS  PubMed  Google Scholar 

  13. Ichikawa T, Haradome H, Hachiya J, Nitatori T, Araki T (1998) Diffusion-weighted MR imaging with a single-shot echoplanar sequence: detection and characterization of focal hepatic lesions. Am J Roentgenol 170(2):397–402

    CAS  Google Scholar 

  14. Ichikawa T, Haradome H, Hachiya J, Nitatori T, Araki T (1999) Diffusion-weighted MR imaging with single-shot echo-planar imaging in the upper abdomen: preliminary clinical experience in 61 patients. Abdom Imaging 24(5):456–461

    Article  CAS  PubMed  Google Scholar 

  15. Einarsdottir H, Karlsson M, Wejde J, Bauer HC (2004) Diffusion-weighted MRI of soft tissue tumours. Eur Radiol 14(6):959–963

    Article  PubMed  Google Scholar 

  16. Baur A, Huber A, Arbogast S, Durr HR, Zysk S, Wendtner C et al (2001) Diffusion-weighted imaging of tumor recurrencies and posttherapeutical soft-tissue changes in humans. Eur Radiol 11(5):828–833

    Article  CAS  PubMed  Google Scholar 

  17. Baysal T, Bulut T, Gokirmak M, Kalkan S, Dusak A, Dogan M (2004) Diffusion-weighted MR imaging of pleural fluid: differentiation of transudative vs. exudative pleural effusions. Eur Radiol 14(5):890–896

    Article  CAS  PubMed  Google Scholar 

  18. Sodickson DK, McKenzie CA (2001) A generalized approach to parallel magnetic resonance imaging. Med Phys 28(8):1629–1643

    Article  CAS  PubMed  Google Scholar 

  19. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Cauteren M (2004) Diffusion weighted whole body imaging with background body signal supression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22(4):275–282

    PubMed  Google Scholar 

  20. Moteki T, Horikoshi H, Endo K (2002) Relationship between apparent diffusion coefficient and signal intensity in endometrial and other pelvic cysts. Magn Reson Imaging 20(6):463–470

    Article  PubMed  Google Scholar 

  21. Therasse P, Arbuck SG, Eisenhauer EA, Wanders J, Kaplan RS, Rubinstein L et al (2000) New guidelines to evaluate the response to treatment in solid tumors. European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada. J Natl Cancer Inst 92(3):205–216

    Article  CAS  PubMed  Google Scholar 

  22. Hein PA, Eskey CJ, Dunn JF, Hug EB (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. Am J Neuroradiol 25(2):201–209

    PubMed  Google Scholar 

  23. Hein PA, Kremser C, Judmaier W, Griebel J, Pfeiffer KP, Kreczy A et al (2003) Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur J Radiol 45(3):214–222

    Article  PubMed  Google Scholar 

  24. Boss EA, Barentsz JO, Massuger LF, Boonstra H (2000) The role of MR imaging in invasive cervical carcinoma. Eur Radiol 10(2):256–270

    Article  CAS  PubMed  Google Scholar 

  25. Fujiwara K, Yoden E, Asakawa T, Shimizu M, Hirokawa M, Oda T et al (2000) Role of magnetic resonance imaging (MRI) in early cervical cancer. Gan To Kagaku Ryoho 27(Suppl 2):576–581

    PubMed  Google Scholar 

  26. Ozsarlak O, Tjalma W, Schepens E, Corthouts B, Op de Beeck B, Van Marck E et al (2003) The correlation of preoperative CT, MR imaging, and clinical staging (FIGO) with histopathology findings in primary cervical carcinoma. Eur Radiol 13(10):2338–2345

    Article  CAS  PubMed  Google Scholar 

  27. Iwata S, Joja I, Okuno K, Miyagi Y, Sakaguchi Y, Kudo T et al (2002) Cervical carcinoma with full-thickness stromal invasion: efficacy of dynamic MR imaging in the assessment of parametrial involvement. Radiat Med 20(5):247–255

    PubMed  Google Scholar 

  28. Seki H, Azumi R, Kimura M, Sakai K (1997) Stromal invasion by carcinoma of the cervix: assessment with dynamic MR imaging. Am J Roentgenol 168(6):1579–1585

    CAS  Google Scholar 

  29. Mayr NA, Yuh WT, Zheng J, Ehrhardt JC, Magnotta VA, Sorosky JI et al (1998) Prediction of tumor control in patients with cervical cancer: analysis of combined volume and dynamic enhancement pattern by MR imaging. Am J Roentgenol 170(1):177–182

    CAS  Google Scholar 

  30. Yamashita Y, Takahashi M, Sawada T, Miyazaki K, Okamura H (1992) Carcinoma of the cervix: dynamic MR imaging. Radiology 182(3):643–648

    CAS  PubMed  Google Scholar 

  31. Yamashita Y, Baba T, Baba Y, Nishimura R, Ikeda S, Takahashi M et al (2000) Dynamic contrast-enhanced MR imaging of uterine cervical cancer: pharmacokinetic analysis with histopathologic correlation and its importance in predicting the outcome of radiation therapy. Radiology 216(3):803–809

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Naganawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naganawa, S., Sato, C., Kumada, H. et al. Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol 15, 71–78 (2005). https://doi.org/10.1007/s00330-004-2529-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-004-2529-4

Keywords

Navigation