Skip to main content
Log in

Translationale Forschung und Diagnostik bei GIST

Translational research and diagnosis in GIST

  • Hauptreferate
  • Published:
Der Pathologe Aims and scope Submit manuscript

Zusammenfassung

Gastrointestinale Stromatumoren (GIST) sind die häufigsten mesenchymalen Tumoren des Gastrointestinaltrakts. Sie tragen in bis zu 90% der Fälle aktivierende KIT- oder PDGFRA-Mutationen und stehen paradigmatisch für eine erfolgreiche Therapie mit Tyrosinkinaseinhibitoren (TKI). Seit der Zulassung des TKI Imatinib im Jahr 2002 hat sich das Gesamtüberleben von Patienten mit metastasiertem GIST verdreifacht. Durch den adjuvanten Einsatz von Imatinib konnte das Gesamtüberleben von Patienten mit lokalisiertem GIST ebenfalls signifikant verlängert werden.

In beiden Konstellationen hat der Mutationsstatus hohe prädiktive Bedeutung. GIST mit KIT-Exon-11-Mutation haben das beste Ansprechen mit partiellen Remissionsraten von bis zu 80%. Bei KIT-Exon-9-mutierten GIST ist die Verdopplung der Tagesdosis auf 800 mg Imatinib der Standard, um die Ansprechraten zu erhöhen. Die PDGFRA-Exon-18-Mutation D842V hat eine primäre Resistenz zur Folge. Die Therapiestrategie bei GIST wird durch ihre molekulare Charakterisierung bestimmt. Die Zahl der Patienten, die unter laufender TKI-Therapie eine durch zusätzliche KIT-Mutationen bedingte sekundäre Resistenz entwickeln, nimmt kontinuierlich zu. Um diesem Problem zu begegnen, wird versucht, alternative Signalwege medikamentös zu adressieren, wie z. B. den mTOR/Akt- oder den RAS/RAF-Signalweg oder die Histondeacetylierung.

Bei GIST ohne KIT- oder PDGFRA-Mutationen, sog. Wildtyp-GIST, wurden weitere genomische Subtypen identifiziert. Eine derartige Subgruppe sind GIST mit inaktivierenden Keimbahnmutationen in den Genen, die Succinatdehydrogenase A, B, C oder D kodieren. Diese Tumoren sind mit Paragangliomen assoziiert. Dieses Krankheitsbild wird als Carney-Stratakis-Syndrom bezeichnet, bei dem die GIST im Magen lokalisiert sind, multinodulär wachsen und einen epitheloiden Phänotyp zeigen. Insbesondere Frauen sind betroffen. Häufig werden Lymphknotenmetastasen beobachtet, die sonst bei GIST äußerst ungewöhnlich sind. Bei der sporadischen Carney-Triade treten zusätzlich pulmonale Chondrome auf; Mutationen in den SDH-Genen kommen hier nicht vor. Eine andere kleine GIST-Subgruppe weist BRAF-Mutationen auf. Schließlich gibt es seltene Familien mit Keimbahnmutationen in KIT oder PDGFRA, die multiple GIST sowie abhängig vom Mutationstyp zusätzlich Mastozytosen, Hyperpigmentierung und/oder Dysphagien entwickeln.

Die Erkenntnis der hohen prädiktiven Relevanz des Mutationsstatus hat zusammenfassend die Therapie von GIST revolutioniert.

Abstract

Gastrointestinal stromal tumors (GIST) are the most common mesenchymal tumors in the digestive tract. In up to 90% of cases, they are characterized by activating mutations in the KIT or the PDGFRA gene. GIST represent a paradigm for successful targeted treatment with tyrosine kinase inhibitors (TKI). Since the approval of the TKI imatinib in 2002 the survival of patients with metastatic GIST has tripled. The next logical step was the concept of using imatinib in an adjuvant approach, which was recently shown to increase overall survival significantly.

In both settings, the mutational status has high predictive implications. In detail, GIST with KIT exon 11 mutations show the best response rates with partial remission rates of up to 80%. In KIT exon 9 mutations, a doubled daily dose of 800 mg imatinib is now standard. The PDGFRA exon 18 mutation D842V has been shown to lead to primary resistance. The treatment strategy in GIST is driven by their molecular characterisation. Further research has increased our knowledge on resistance mechanisms in solid tumors against TKI. The number of patients with secondary resistance due to acquired KIT mutations is increasing with treatment duration. Strategies to address this situation are the introduction of novel pathway inhibitors targeting different levels of signal transduction pathways, such as the mTOR/Akt pathway, the RAS/RAF pathway, histone deacetylation, among others.

Among the GIST without mutations in the common hot spot regions of KIT and PDGFRA, the so-called wildtype GIST, further genomic subgroups have been identified. One such subgroup carries inactivating germline mutations in the genes encoding succinate dehydrogenase B, C, or D. They are associated with the occurrence of paragangliomas, so-called Carney-Stratakis syndrome. Most frequently, these GIST are located in the stomach, showing an epithelioid phenotype and a multinodular growth pattern. They preferentially occur in young females and often show lymph node metastases, the latter being very unusual in sporadic GIST. In sporadic Carney’s triad additional pulmonary chondromas are observed and there are no SDH mutations. Another small subgroup of sporadic GIST present with BRAF mutations as an alternative genomic event. Finally, very rare kindreds with germline mutations in either KIT or PDGFRA have been described who develop multiple GIST and depending on the mutational subtype mastocytosis, hyperpigmentation and/or dysphagia.

In summary, the molecular characterisation of GIST has revolutionized their treatment due to increasing knowledge about the high relevance of predictive molecular typing in solid tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Hirota S, Isozaki K, Moriyama Y et al (1998) Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279:577–580

    Article  PubMed  CAS  Google Scholar 

  2. Casali P, Blay J, Experts ECECPo (2010) Gastrointestinal stromal tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 21:v98–102

    Article  PubMed  Google Scholar 

  3. Blanke C, Rankin C, Demetri G et al (2008) Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Onkol 26:626–632

    Article  CAS  Google Scholar 

  4. Debiec-Rychter M, Sciot R, Le Cesne A et al (2006) KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer 42:1093–1103

    Article  PubMed  CAS  Google Scholar 

  5. Dematteo R, Ballman K, Antonescu C et al (2009) Adjuvant imatinib mesylate after resection of localised, primary gastrointestinal stromal tumour: a randomised, double-blind, placebo-controlled trial. Lancet 373:1097–1104

    Article  PubMed  CAS  Google Scholar 

  6. Joensuu H, Eriksson M, Sundby Hall K et al (2012) One vs three years of adjuvant imatinib for operable gastrointestinal stromal tumor. A randomized trial. JAMA 307:1265–1272

    Article  PubMed  CAS  Google Scholar 

  7. Miettinen M, Lasota J (2006) Gastrointestinal stromal tumors: Pathology and prognosis at different sites. Semin Diagn Pathol 23:70–83

    Article  PubMed  Google Scholar 

  8. Hohenberger P, Ronellenfitsch U, Oladeji O et al (2010) Pattern of recurrence in patients with ruptured primary gastrointestinal stromal tumour. Br J Surg 97:1854–1859

    Article  PubMed  CAS  Google Scholar 

  9. Joensuu H (2008) Risk stratification of patients diagnosed with gastrointestinal stromal tumor. Hum Pathol 39:1411–1419

    Article  PubMed  Google Scholar 

  10. Gold J, Gönen M, Gutiérrez A et al (2009) Development and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localised primary gastrointestinal stromal tumour: a retrospective analysis. Lancet Oncol 10:1045–1052

    Article  PubMed  Google Scholar 

  11. Rossi S, Gasparotto D, Toffolatti L et al (2010) Molecular and clinicopathologic characterization of gastrointestinal stromal tumors (GISTs) of small size. Am J Surg Pathol 34:1480–1491

    Article  PubMed  Google Scholar 

  12. Wardelmann E, Hohenberger P, Reichardt P et al (2010) Gastrointestinal stromal tumors of the stomach. Updates and differences compared to other locations. Pathologe 31:195–198

    Article  PubMed  CAS  Google Scholar 

  13. Wardelmann E, Losen I, Hans V et al (2003) Deletion of Trp-557 and Lys-558 in the juxtamembrane domain of the c-kit protooncogene is associated with metastatic behavior of gastrointestinal stromal tumors. Int J Cancer 106:887–895

    Article  PubMed  CAS  Google Scholar 

  14. Antonescu C, Sommer G, Sarran L et al (2003) Association of KIT exon 9 mutations with nongastric primary site and aggressive behavior: KIT mutation analysis and clinical correlates of 120 gastrointestinal stromal tumors. Clin Cancer Res 9:3329–3337

    PubMed  CAS  Google Scholar 

  15. Lasota J, Dansonka-Mieszkowska A, Sobin L, Miettinen M (2004) A great majority of GISTs with PDGFRA mutations represent gastric tumors of low or no malignant potential. Lab Invest 84:874–883

    Article  PubMed  CAS  Google Scholar 

  16. Martin-Broto J, Gutierrez A, Garcia-del-Muro X et al (2010) Prognostic time dependence of deletions affecting codons 557 and/or 558 of KIT gene for relapse-free survival (RFS) in localized GIST: a Spanish Group for Sarcoma Research (GEIS) Study. Ann Oncol 21:1552–1557

    Article  PubMed  CAS  Google Scholar 

  17. Le Cesne A, Ray-Coquard I, Bui B et al (2010) Discontinuation of imatinib in patients with advanced gastrointestinal stromal tumours after 3 years of treatment: an open-label multicentre randomised phase 3 trial. Lancet Oncol 11:942–949

    Article  Google Scholar 

  18. Corless C, Ballman K, Antonescu C et al (2010) Relation of tumor pathologic and molecular features to outcome after surgical resection of localized primary gastrointestinal stromal tumor (GIST): Results of the intergroup phase III trial ACOSOG Z9001. J Clin Oncol 28:10006

    Google Scholar 

  19. Eisenberg B, Trent J (2011) Adjuvant and neoadjuvant imatinib therapy: current role in the management of gastrointestinal stromal tumors. Int J Cancer 129:2533–2542

    Article  PubMed  CAS  Google Scholar 

  20. Corless C, Barnett C, Heinrich M (2011) Gastrointestinal stromal tumours: origin and molecular oncology. Nat Rev Cancer 11:865–878

    PubMed  CAS  Google Scholar 

  21. Joensuu H, DeMatteo R (2012) The management of gastrointestinal stromal tumors: a model for targeted and multidisciplinary therapy of malignancy. Annu Rev Med 63:247–258

    Article  PubMed  CAS  Google Scholar 

  22. Liegl B, Kepten I, Le C et al (2008) Heterogeneity of kinase inhibitor resistance mechanisms in GIST. J Pathol 216:64–74

    Article  PubMed  CAS  Google Scholar 

  23. Wang W, Conley A, Reynoso D et al (2011) Mechanisms of resistance to imatinib and sunitinib in gastrointestinal stromal tumor. Cancer Chemother Pharmacol 67:S15–24

    Article  PubMed  Google Scholar 

  24. Wardelmann E, Biermann K, Merkelbach-Bruse S et al (2006) Polyclonal Resistance in Gastrointestinal Stromal Tumor Treated with Sequential Kinase Inhibitors. Clin Cancer Res 12:6206

    Article  CAS  Google Scholar 

  25. Wardelmann E, Thomas N, Merkelbach-Bruse S et al (2005) Acquired resistance to imatinib in gastrointestinal stromal tumors caused by multiple KIT mutations. Lancet Oncol 6:249–251

    Article  PubMed  CAS  Google Scholar 

  26. Choi H, Charnsangavej C, Faria S et al (2007) Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol 25:1753–1759

    Article  PubMed  Google Scholar 

  27. Miranda C, Nucifora M, Molinari F et al (2012) KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res 18:1769–1776

    Article  PubMed  CAS  Google Scholar 

  28. Agaram N, Wong G, Guo T et al (2008) Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer 47:853–859

    Article  PubMed  CAS  Google Scholar 

  29. Agaimy A, Terracciano L, Dirnhofer S et al (2009) V600E BRAF mutations are alternative early molecular events in a subset of KIT/PDGFRA wild-type gastrointestinal stromal tumours. J Clin Pathol 62:613–616

    Article  PubMed  CAS  Google Scholar 

  30. Daniels M, Lurkin I, Pauli R et al (2011) Spectrum of KIT/PDGFRA/BRAF mutations and Phosphatidylinositol-3-Kinase pathway gene alterations in gastrointestinal stromal tumors (GIST). Cancer Lett 312:43–54

    Article  PubMed  CAS  Google Scholar 

  31. Carney J, Stratakis C (2002) Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Gen 108:132–139

    Article  Google Scholar 

  32. Janeway KA, Kim YS, Lodish M et al (2011) Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 108:314–318

    Article  PubMed  CAS  Google Scholar 

  33. deJong E, Mulder W, Nooitgedacht E et al (1998) Carney’s triad. Eur J Surg Oncol 24:147–149

    Article  CAS  Google Scholar 

  34. Stratakis C, Carney J (2009) The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney-Stratakis syndrome): molecular genetics and clinical implications. J Intern Med 266:43–52

    Article  PubMed  CAS  Google Scholar 

  35. Zhang L, Smyrk T, Young WJ et al (2010) Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviorally from sporadic gastric gastrointestinal stromal tumors: findings in 104 cases. Am J Surg Pathol 34:53–64

    Article  PubMed  Google Scholar 

  36. Dewaele B, Wasag B, Cools J et al (2008) Activity of dasatinib, a dual SRC/ABL kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against gastrointestinal stromal tumor-associated PDGFRA D842V mutation. Clin Cancer Res 14:5749–5758

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Die korrespondierende Autorin weist auf folgende Beziehungen hin: Honorare, Forschungsförderung von Novartis Oncology, MSD, PharmaMar.

The supplement this article is part of is not sponsored by the industry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Wardelmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wardelmann, E. Translationale Forschung und Diagnostik bei GIST. Pathologe 33 (Suppl 2), 273–277 (2012). https://doi.org/10.1007/s00292-012-1682-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00292-012-1682-9

Schlüsselwörter

Keywords

Navigation