Skip to main content

Advertisement

Log in

Can taxanes provide benefit in patients with CNS tumors and in pediatric patients with tumors? An update on the preclinical development of cabazitaxel

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

While first-generation taxanes are valuable treatment options for many solid tumors, they are limited by an inability to cross the blood–brain barrier (BBB) and by limited efficacy in pediatric patients. Following promising preclinical data for the next-generation taxane cabazitaxel, including activity in tumor models fully sensitive, poorly sensitive or insensitive to docetaxel, and its ability to cross the BBB, further preclinical studies of cabazitaxel relevant to these two clinical indications were performed.

Methods

Cabazitaxel brain distribution was assessed in mice, rats and dogs. Cabazitaxel antitumor activity was assessed in mice bearing intracranial human glioblastoma (SF295; U251) xenografts, and subcutaneous cell line-derived human pediatric sarcoma (rhabdomyosarcoma RH-30; Ewing’s sarcoma TC-71 and SK-ES-1) or patient-derived pediatric sarcoma (osteosarcoma DM77 and DM113; Ewing’s sarcoma DM101) xenografts. The activity of cabazitaxel–cisplatin combination was evaluated in BALB/C mice bearing the syngeneic murine colon adenocarcinoma, C51.

Results

Cabazitaxel penetrated rapidly in the brain, with a similar brain–blood radioactivity exposure relationship across different animal species. In intracranial human glioblastoma models, cabazitaxel demonstrated superior activity to docetaxel both at early (before BBB disruption) and at advanced stages, consistent with enhanced brain penetration. Compared with similar dose levels of docetaxel, cabazitaxel induced significantly greater tumor growth inhibition across six pediatric tumor models and more tumor regressions in five of the six models. Therapeutic synergism was observed between cisplatin and cabazitaxel, regardless of administration sequence.

Conclusions

These preclinical data suggest that cabazitaxel could be an effective therapy in CNS and pediatric tumors, supporting ongoing clinical evaluation in these indications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Harrison MR, Holen KD, Liu G (2009) Beyond taxanes: a review of novel agents that target mitotic tubulin and microtubules, kinases, and kinesins. Clin Adv Hematol Oncol 7:54–64

    PubMed  Google Scholar 

  2. Deeken JF, Loscher W (2007) The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res 13:1663–1674

    Article  PubMed  CAS  Google Scholar 

  3. Agarwal S, Hartz AM, Elmquist WF, Bauer B (2011) Breast cancer resistance protein and P-glycoprotein in brain cancer: two gatekeepers team up. Curr Pharm Des 17:2793–2802

    Article  PubMed  CAS  Google Scholar 

  4. Fellner S, Bauer B, Miller DS, Schaffrik M, Fankhanel M, Spruss T, Bernhardt G, Graeff C, Farber L, Gschaidmeier H, Buschauer A, Fricker G (2002) Transport of paclitaxel (Taxol) across the blood-brain barrier in vitro and in vivo. J Clin Invest 110:1309–1318

    PubMed  CAS  Google Scholar 

  5. Kemper EM, Verheij M, Boogerd W, Beijnen JH, van Tellingen O (2004) Improved penetration of docetaxel into the brain by co-administration of inhibitors of P-glycoprotein. Eur J Cancer 40:1269–1274

    Article  PubMed  CAS  Google Scholar 

  6. Prados MD, Schold SC, Spence AM, Berger MS, McAllister LD, Mehta MP, Gilbert MR, Fulton D, Kuhn J, Lamborn K, Rector DJ, Chang SM (1996) Phase II study of paclitaxel in patients with recurrent malignant glioma. J Clin Oncol 14:2316–2321

    PubMed  CAS  Google Scholar 

  7. Chamberlain MC, Kormanik P (1995) Salvage chemotherapy with paclitaxel for recurrent primary brain tumors. J Clin Oncol 13:2066–2071

    PubMed  CAS  Google Scholar 

  8. Chamberlain MC, Kormanik P (1999) Salvage chemotherapy with taxol for recurrent anaplastic astrocytomas. J Neurooncol 43:71–78

    Article  PubMed  CAS  Google Scholar 

  9. Hurwitz CA, Strauss LC, Kepner J, Kretschmar C, Harris MB, Friedman H, Kun L, Kadota R (2001) Paclitaxel for the treatment of progressive or recurrent childhood brain tumors: a pediatric oncology phase II study. J Pediatr Hematol Oncol 23:277–281

    Article  PubMed  CAS  Google Scholar 

  10. Forsyth P, Cairncross G, Stewart D, Goodyear M, Wainman N, Eisenhauer E (1996) Phase II trial of docetaxel in patients with recurrent malignant glioma: a study of the National Cancer Institute of Canada Clinical Trials Group. Invest New Drugs 14:203–206

    Article  PubMed  CAS  Google Scholar 

  11. Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, Nass D, Hadani M, Ram Z (2004) Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg 100:472–479

    Article  PubMed  CAS  Google Scholar 

  12. Izbicka E, Campos D, Marty J, Carrizales G, Mangold G, Tolcher A (2006) Molecular determinants of differential sensitivity to docetaxel and paclitaxel in human pediatric cancer models. Anticancer Res 26:1983–1988

    PubMed  CAS  Google Scholar 

  13. Blaney SM, Seibel NL, O’Brien M, Reaman GH, Berg SL, Adamson PC, Poplack DG, Krailo MD, Mosher R, Balis FM (1997) Phase I trial of docetaxel administered as a 1-hour infusion in children with refractory solid tumors: a collaborative pediatric branch, National Cancer Institute and Children’s Cancer Group trial. J Clin Oncol 15:1538–1543

    PubMed  CAS  Google Scholar 

  14. Hurwitz CA, Relling MV, Weitman SD, Ravindranath Y, Vietti TJ, Strother DR, Ragab AH, Pratt CB (1993) Phase I trial of paclitaxel in children with refractory solid tumors: a Pediatric Oncology Group Study. J Clin Oncol 11:2324–2329

    PubMed  CAS  Google Scholar 

  15. Zwerdling T, Krailo M, Monteleone P, Byrd R, Sato J, Dunaway R, Seibel N, Chen Z, Strain J, Reaman G (2006) Phase II investigation of docetaxel in pediatric patients with recurrent solid tumors: a report from the Children’s Oncology Group. Cancer 106:1821–1828

    Article  PubMed  CAS  Google Scholar 

  16. Mora J, Cruz CO, Parareda A, de Torres C (2009) Treatment of relapsed/refractory pediatric sarcomas with gemcitabine and docetaxel. J Pediatr Hematol Oncol 31:723–729

    Article  PubMed  CAS  Google Scholar 

  17. Peterson JK, Tucker C, Favours E, Cheshire PJ, Creech J, Billups CA, Smykla R, Lee FYF, Houghton PJ (2005) In vivo evaluation of ixabepilone (BMS247550), a novel epothilone B derivative, against pediatric cancer models. Clin Cancer Res 11:6950–6958

    Article  PubMed  CAS  Google Scholar 

  18. Jacobs S, Fox E, Krailo M, Hartley G, Navid F, Wexler L, Blaney SM, Goodwin A, Goodspeed W, Balis FM, Adamson PC, Widemann BC (2010) Phase II trial of ixabepilone administered daily for five days in children and young adults with refractory solid tumors: a report from the children’s oncology group. Clin Cancer Res 16:750–754

    Article  PubMed  CAS  Google Scholar 

  19. Sanofi (2011) JEVTANA® (cabazitaxel) Injection. Summary of Product Characteristics, EMA

  20. Sanofi U.S. LLC (2010) JEVTANA® (cabazitaxel) Injection. Prescribing Information, FDA

  21. Mita AC, Denis LJ, Rowinsky EK, de Bono JS, Goetz AD, Ochoa L, Forouzesh B, Beeram M, Patnaik A, Molpus K, Semiond D, Besenval M, Tolcher AW (2009) Phase I and pharmacokinetic study of XRP6258 (RPR 116258A), a novel taxane, administered as a 1-hour infusion every 3 weeks in patients with advanced solid tumors. Clin Cancer Res 15:723–730

    Article  PubMed  CAS  Google Scholar 

  22. Vrignaud P, Sémiond D, Lejeune P, Bouchard H, Calvet L, Combeau C, Riou J-F, Commerçon A, Lavelle F, Bissery M-C (2013) Preclinical antitumor activity of cabazitaxel, a semisynthetic taxane active in taxane-resistant tumors. Clin Cancer Res 19:2973–2983

    Article  PubMed  CAS  Google Scholar 

  23. Cisternino S, Bourasset F, Archimbaud Y, Semiond D, Sanderink G, Scherrmann JM (2003) Nonlinear accumulation in the brain of the new taxoid TXD258 following saturation of P-glycoprotein at the blood-brain barrier in mice and rats. Br J Pharmacol 138:1367–1375

    Article  PubMed  CAS  Google Scholar 

  24. Carrle D, Bielack SS (2006) Current strategies of chemotherapy in osteosarcoma. Int Orthop 30:445–451

    Article  PubMed  Google Scholar 

  25. Jekunen AP, Christen RD, Shalinsky DR, Howell SB (1994) Synergistic interaction between cisplatin and taxol in human ovarian carcinoma cells in vitro. Br J Cancer 69:299–306

    Article  PubMed  CAS  Google Scholar 

  26. Corbett TH, Leopold WR, Dykes DJ, Roberts BJ, Griswold DP Jr, Schabel FM Jr (1982) Toxicity and anticancer activity of a new triazine antifolate (NSC 127755). Cancer Res 42:1707–1715

    PubMed  CAS  Google Scholar 

  27. Geran R, Greenberg N, Macdonald M, Schumacher A, Abbott B (1972) Protocols for screening chemical agents and natural products against animal tumors and other biological systems (third edition). Cancer Chemother Rep 3:1–103

    Google Scholar 

  28. Corbett TH, Roberts BJ, Leopold WR, Peckham JC, Wilkoff LJ, Griswold DP Jr, Schabel FM Jr (1984) Induction and chemotherapeutic response of two transplantable ductal adenocarcinomas of the pancreas in C57BL/6 mice. Cancer Res 44:717–726

    PubMed  CAS  Google Scholar 

  29. Bissery MC, Vrignaud P, Lavelle F (1995) Preclinical profile of docetaxel (taxotere): efficacy as a single agent and in combination. Semin Oncol 22:3–16

    CAS  Google Scholar 

  30. Dieras V, Lortholary A, Laurence V, Delva R, Girre V, Livartowski A, Assadourian S, Semiond D, Pierga JY (2013) Cabazitaxel in patients with advanced solid tumours: results of a phase I and pharmacokinetic study. Eur J Cancer 49:25–34

    Google Scholar 

  31. Bristol-Myers Squibb (2010) BiCNU® (carmustine for injection). Prescribing Information, FDA

  32. Roche VF (2012) Cancer and chemotherapy. In: Lemke TL, Williams DA (eds) Foye’s principles of medicinal chemistry. Lippincott, Williams & Wilkins, Philadelphia, PA, USA

    Google Scholar 

  33. O’Reilly T, Wartmann M, Brueggen J, Allegrini PR, Floersheimer A, Maira M, McSheehy PM (2008) Pharmacokinetic profile of the microtubule stabilizer patupilone in tumor-bearing rodents and comparison of anti-cancer activity with other MTS in vitro and in vivo. Cancer Chemother Pharmacol 62:1045–1054

    Article  PubMed  Google Scholar 

  34. Oehler C, Frei K, Rushing EJ, McSheehy PM, Weber D, Allegrini PR, Weniger D, Lutolf UM, Knuth A, Yonekawa Y, Barath K, Broggini-Tenzer A, Pruschy M, Hofer S (2012) Patupilone (epothilone B) for recurrent glioblastoma: clinical outcome and translational analysis of a single-institution phase I/II trial. Oncology 83:1–9

    Article  PubMed  CAS  Google Scholar 

  35. Hoffmann J, Fichtner I, Lemm M, Lienau P, Hess-Stumpp H, Rotgeri A, Hofmann B, Klar U (2009) Sagopilone crosses the blood-brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro Oncol 11:158–166

    Article  PubMed  CAS  Google Scholar 

  36. Freedman RA, Bullitt E, Sun L, Gelman R, Harris G, Ligibel JA, Krop IE, Partridge AH, Eisenberg E, Winer EP, Lin NU (2011) A phase II study of sagopilone (ZK 219477; ZK-EPO) in patients with breast cancer and brain metastases. Clin Breast Cancer 11:376–383

    Article  PubMed  CAS  Google Scholar 

  37. Stupp R, Tosoni A, Bromberg JE, Hau P, Campone M, Gijtenbeek J, Frenay M, Breimer L, Wiesinger H, Allgeier A, van den Bent MJ, Bogdahn U, van der Graaf W, Yun HJ, Gorlia T, Lacombe D, Brandes AA (2011) Sagopilone (ZK-EPO, ZK 219477) for recurrent glioblastoma. A phase II multicenter trial by the European Organisation for Research and Treatment of Cancer (EORTC) Brain Tumor Group. Ann Oncol 22:2144–2149

    Article  PubMed  CAS  Google Scholar 

  38. Pui CH, Gajjar AJ, Kane JR, Qaddoumi IA, Pappo AS (2011) Challenging issues in pediatric oncology. Nat Rev Clin Oncol 8:540–549

    Article  PubMed  Google Scholar 

  39. Burningham Z, Hashibe M, Spector L, Schiffman JD (2012) The epidemiology of sarcoma. Clin Sarcoma Res 2:14

    Article  PubMed  Google Scholar 

  40. Kopetz S, Lemos R, Powis G (2012) The promise of patient-derived xenografts: the best laid plans of mice and men. Clin Cancer Res 18:5160–5162

    Article  PubMed  Google Scholar 

  41. Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, Landron S, Bigot L, Nemati F, Dartigues P, Weiswald LB, Lantuas D, Morgand L, Pham E, Gonin P, Dangles-Marie V, Job B, Dessen P, Bruno A, Pierre A, De The H, Soliman H, Nunes M, Lardier G, Calvet L, Demers B, Prevost G, Vrignaud P, Roman-Roman S, Duchamp O, Berthet C (2012) Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res 18:5314–5328

    Article  PubMed  CAS  Google Scholar 

  42. Stordal B, Davey M (2007) Understanding cisplatin resistance using cellular models. IUBMB Life 59:696–699

    Article  PubMed  CAS  Google Scholar 

  43. Tajeddine N, Galluzzi L, Kepp O, Hangen E, Morselli E, Senovilla L, Araujo N, Pinna G, Larochette N, Zamzami N, Modjtahedi N, Harel-Bellan A, Kroemer G (2008) Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene 27:4221–4232

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The studies were sponsored by Sanofi. The authors gratefully acknowledge D. J. Dykes from SRI and Dr J. P. Sarsat for their contribution to the glioblastomas studies; M. Malfilatre, C. Janvier, E. Boulcourt-Sambou, Dr L. Vincent and Dr L. Calvet for their contribution to the pediatric tumor cell-based xenograft studies; Dr E. Bruckheimer from Champions Oncology, F. Windenberger and O. Couder for their contribution to the pediatric PDX studies; Drs G. Sanderink, Y. Archimbaud, P. Gires, R. Pellerin, L. Ridoux, O. Pasquier, M. Marietta and M. H. Pascual for their contribution to the PK studies of cabazitaxel; Drs V. Benning and E. Beys for their contribution to the preclinical development of cabazitaxel; and Dr M. Nunes for his contribution to the combination study. The authors received support in the form of medical writing services from Ben Caldwell of MediTech Media, funded by Sanofi.

Conflict of interest

DS, SS, MCB and PV have a remunerated employment position with Sanofi to disclose; DS has stock ownership in Sanofi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vrignaud.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 145 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sémiond, D., Sidhu, S.S., Bissery, MC. et al. Can taxanes provide benefit in patients with CNS tumors and in pediatric patients with tumors? An update on the preclinical development of cabazitaxel. Cancer Chemother Pharmacol 72, 515–528 (2013). https://doi.org/10.1007/s00280-013-2214-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-013-2214-x

Keywords

Navigation