Skip to main content

Advertisement

Log in

A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Antigen-specific immunotherapy was studied in a multi-institutional phase 1/2 study by combining decitabine (DAC) followed by an autologous dendritic cell (DC)/MAGE-A1, MAGE-A3 and NY-ESO-1 peptide vaccine in children with relapsed/refractory solid tumors. Patients aged 2.5–15 years with relapsed neuroblastoma, Ewing’s sarcoma, osteosarcoma and rhabdomyosarcoma were eligible to receive DAC followed by DC pulsed with overlapping peptides derived from full-length MAGE-A1, MAGE-A3 and NY-ESO-1. The primary endpoints were to assess the feasibility and tolerability of this regimen. Each of four cycles consisted of week 1: DAC 10 mg/m2/day for 5 days and weeks 2 and 3: DC vaccine once weekly. Fifteen patients were enrolled in the study, of which 10 were evaluable. Generation of DC was highly feasible for all enrolled patients. The treatment regimen was generally well tolerated, with the major toxicity being DAC-related myelosuppression in 5/10 patients. Six of nine patients developed a response to MAGE-A1, MAGE-A3 or NY-ESO-1 peptides post-vaccine. Due to limitations in number of cells available for analysis, controls infected with a virus encoding relevant genes have not been performed. Objective responses were documented in 1/10 patients who had a complete response. Of the two patients who had no evidence of disease at the time of treatment, one remains disease-free 2 years post-therapy, while the other experienced a relapse 10 months post-therapy. The chemoimmunotherapy approach using DAC/DC-CT vaccine is feasible, well tolerated and results in antitumor activity in some patients. Future trials to maximize the likelihood of T cell responses post-vaccine are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALT:

Alanine aminotransferase

ANC:

Absolute neutrophil count

AST:

Aspartate aminotransferase

CGGs:

Cancer germline genes

CTCAE:

Common terminology criteria for adverse events

CTL:

Cytotoxic T lymphocytes

C1W1:

Cycle1-week1

DAC:

Decitabine

DC:

Dendritic cell

ECG:

Echocardiogram

ES:

Ewing’s sarcoma

GCSF:

Granulocyte colony-stimulating factor

GFR:

Glomerular filtration rate

GM-CSF:

Granulocyte macrophage colony-stimulating factor

HLA:

Human leukocyte antigen

NB:

Neuroblastoma

OS:

Osteogenic sarcoma

PBMCs:

Peripheral blood mononuclear cells

RMS:

Rhabdomyosarcoma

References

  1. Igne FH, Krammer PH (2002) Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 71(6):907–920

    Google Scholar 

  2. Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4:1

    PubMed  Google Scholar 

  3. Pollack SM, Loggers ET, Rodler ET, Yee C, Jones RL (2011) Immune-based therapies for sarcoma. Sarcoma 2011:438940

    Article  PubMed Central  PubMed  Google Scholar 

  4. Lee SY, Obata Y, Yoshida M, Stockert E, Williamson B, Jungbluth AA et al (2003) Immunomic analysis of human sarcoma. Proc Natl Acad Sci USA 100(5):2651–2656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Nicholaou T, Ebert L, Davis ID, Robson N, Klein O, Maraskovsky E et al (2006) Directions in the immune targeting of cancer: lessons learned from the cancer-testis Ag NY-ESO-1. Immunol Cell Biol 84(3):303–317

    Article  CAS  PubMed  Google Scholar 

  6. Wolfl M, Jungbluth AA, Garrido F, Cabrera T, Meyen-Southard S, Spitz R et al (2005) Expression of MHC class I, MHC class II, and cancer germline antigens in neuroblastoma. Cancer Immunol Immunother 54(4):400–406

    Article  PubMed  Google Scholar 

  7. Jacobs JF, Brasseur F, Hulsbergen-van de Kaa CA, van de Rakt MW, Figdor CG, Adema GJ et al (2007) Cancer-germline gene expression in pediatric solid tumors using quantitative real-time PCR. Int J Cancer 120(1):67–74

    Article  CAS  PubMed  Google Scholar 

  8. Liu XF, Helman LJ, Yeung C, Bera TK, Lee B, Pastan I (2000) XAGE-1, a new gene that is frequently expressed in Ewing’s sarcoma. Cancer Res 60(17):4752–4755

    CAS  PubMed  Google Scholar 

  9. Foell JL, Hesse M, Volkmer I, Schmiedel BJ, Neumann I, Staege MS (2008) Membrane-associated phospholipase A1 beta (LIPI) Is an Ewing tumour-associated cancer/testis antigen. Pediatr Blood Cancer 51(2):228–234

    Article  PubMed  Google Scholar 

  10. Weber J, Salgaller M, Samid D, Johnson B, Herlyn M, Lassam N et al (1994) Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res 54(7):1766–1771

    CAS  PubMed  Google Scholar 

  11. Adair SJ, Hogan KT (2009) Treatment of ovarian cancer cell lines with 5-aza-2′-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol Immunother 58(4):589–601

    Article  CAS  PubMed  Google Scholar 

  12. George RE, Lahti JM, Adamson PC, Zhu K, Finkelstein D, Ingle AM et al (2010) Phase I study of decitabine with doxorubicin and cyclophosphamide in children with neuroblastoma and other solid tumors: a Children’s Oncology Group study. Pediatr Blood Cancer 55(4):629–638

    Article  PubMed Central  PubMed  Google Scholar 

  13. Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G (2005) Antileukemia activity of the combination of 5-aza-2′-deoxycytidine with valproic acid. Leuk Res 29(7):739–748

    Article  CAS  PubMed  Google Scholar 

  14. Issa JP, Gharibyan V, Cortes J, Jelinek J, Morris G, Verstovsek S et al (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 23(17):3948–3956

    Article  CAS  PubMed  Google Scholar 

  15. Bao L, Dunham K, Lucas K (2011) MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing. Cancer Immunol Immunother 60(9):1299–1307

    Article  CAS  PubMed  Google Scholar 

  16. Krishnadas DK, Bao L, Bai F, Chencheri SC, Lucas K (2014) Decitabine facilitates immune recognition of sarcoma cells by upregulating CT antigens, MHC molecules, and ICAM-1. Tumour Biol 35(6):5753–5762

    Article  CAS  PubMed  Google Scholar 

  17. Chianese-Bullock KA, Pressley J, Garbee C, Hibbitts S, Murphy C, Yamshchikov G et al (2005) MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J Immunol 174(5):3080–3086

    Article  CAS  PubMed  Google Scholar 

  18. Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, Chen Q et al (2004) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci USA 101(29):10697–10702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Odunsi K, Matsuzaki J, James SR, Mhawech-Fauceglia P, Tsuji T, Miller A et al (2014) Epigenetic potentiation of NY-ESO-1 vaccine therapy in human ovarian cancer. Cancer Immunol Res 2(1):37–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Schwartz GJ, Gauthier B (1985) A simple estimate of glomerular filtration rate in adolescent boys. J Pediatr 106(3):522–526

    Article  CAS  PubMed  Google Scholar 

  21. Krishnadas DK, Shapiro T, Lucas K (2013) Complete remission following decitabine/dendritic cell vaccine for relapsed neuroblastoma. Pediatrics 131(1):e336–e341

    Article  PubMed  Google Scholar 

  22. Arpinati M, Green CL, Heimfeld S, Heuser JE, Anasetti C (2000) Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 95(8):2484–2490

    CAS  PubMed  Google Scholar 

  23. Goodyear O, Agathanggelou A, Novitzky-Basso I, Siddique S, McSkeane T, Ryan G et al (2010) Induction of a CD8+ T-cell response to the MAGE cancer testis antigen by combined treatment with azacitidine and sodium valproate in patients with acute myeloid leukemia and myelodysplasia. Blood 116(11):1908–1918

    Article  CAS  PubMed  Google Scholar 

  24. Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, Bleakley M et al (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110(1):201–210

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zhu Y, Chen L (2014) CD137 as a biomarker for tumor-reactive T cells: finding gold in the desert. Clin Cancer Res 20(1):3–5

    Article  CAS  PubMed  Google Scholar 

  26. Akers SN, Odunsi K, Karpf AR (2010) Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol 6(5):717–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mackensen A, Herbst B, Chen JL, Köhler G, Noppen C, Herr W, Spagnoli GC et al (2000) Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int J Cancer 86(3):385–392

    Article  CAS  PubMed  Google Scholar 

  28. Bender A, Karbach J, Neumann A, Jäger D, Al-Batran SE, Atmaca A, Weidmann E et al (2007) LUD 00-009: phase 1 study of intensive course immunization with NY-ESO-1 peptides in HLA-A2 positive patients with NY-ESO-1-expressing cancer. Cancer Immun 7:16

    PubMed Central  PubMed  Google Scholar 

  29. Emens LA, Asquith JM, Leatherman JM, Kobrin BJ, Petrik S, Laiko M, Levi J et al (2009) Timed sequential treatment with cyclophosphamide, doxorubicin, and an allogeneic granulocyte-macrophage colony-stimulating factor–secreting breast tumor vaccine: a chemotherapy dose-ranging factorial study of safety and immune activation. J Clin Oncol 27(35):5911–5918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. King IL, Kroenke MA, Segal BM (2010) GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. J Exp Med 207(5):953–961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Vadhan-Raj S, Broxmeyer HE, Hittelman WN, Papadopoulos NE, Chawla SP, Fenoglio C et al (1992) Abrogating chemotherapy-induced myelosuppression by recombinant granulocyte-macrophage colony-stimulating factor in patients with sarcoma: protection at the progenitor cell level. J Clin Oncol 10(8):1266–1277

    CAS  PubMed  Google Scholar 

  32. Rapoport AP, Aqui NA, Stadtmauer EA, Vogl DT, Fang HB, Cai L et al (2011) Combination immunotherapy using adoptive T-cell transfer and tumor antigen vaccination on the basis of hTERT and survivin after ASCT for myeloma. Blood 117(3):788–797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Rapoport AP, Stadtmauer EA, Aqui N, Vogl D, Chew A, Fang HB et al (2009) Rapid immune recovery and graft-versus-host disease-like engraftment syndrome following adoptive transfer of costimulated autologous T cells. Clin Cancer Res 15(13):4499–4507

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K et al (2012) Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res 18(23):6497–6508

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the clinical research staff at the Dana-Farber Cancer Institute (DFCI), Kosair Charities Pediatric Clinical Research Unit and Penn State Children’s Hospital. The work was supported by funds from Hyundai Hope on Wheels, Solving Kids’ Cancer, The Andrew McDonough B + Foundation, the Pierce Phillips Charity and the Dana-Farber Cancer Institute (DFCI) Neuroblastoma Fund. We thank all the patients enrolled in this trial and their families for their participation in the study.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rani E. George or Kenneth G. Lucas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnadas, D.K., Shusterman, S., Bai, F. et al. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma. Cancer Immunol Immunother 64, 1251–1260 (2015). https://doi.org/10.1007/s00262-015-1731-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-015-1731-3

Keywords

Navigation