Skip to main content

Advertisement

Log in

TLR8 stimulation enhances cetuximab-mediated natural killer cell lysis of head and neck cancer cells and dendritic cell cross-priming of EGFR-specific CD8+ T cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Cetuximab is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody that prolongs survival in the treatment for head and neck cancer (HNC), but only in 10–20 % of patients. An immunological mechanism of action such as natural killer (NK) cell–mediated antibody-dependent cellular cytotoxicity (ADCC) has been suggested. We investigated the effects of activating toll-like receptor (TLR)-8 to enhance activity of cetuximab-stimulated, FcγR-bearing cells.

Objective

To determine the capability of TLR8-stimulation to enhance the activation and function of NK cells and dendritic cells (DC) in the presence of cetuximab-coated HNC cells.

Methods

Peripheral blood mononuclear cells (PBMC), NK, DC, and CD8+ T cells were isolated and analyzed using 51Cr release ADCC, flow cytometry analysis, cytokine ELISA, and EGFR853-861 tetramer staining.

Results

TLR8 stimulation of unfractionated PBMC led to enhanced cetuximab-mediated ADCC in healthy donors (p < 0.01) and HNC patients (p < 0.001), which was dependent on NK cells. Secretion of Th1 cytokines TNFα (p < 0.0001), IFNγ (p < 0.0001), and IL-12p40 (p < 0.005) was increased. TLR8 stimulation of PBMC augmented cetuximab-enhanced NK cell degranulation (p < 0.001). TLR8-stimulated NK cells enhanced DC maturation markers CD80, CD83, and CD86 in co-culture with cetuximab-treated HNC cells. TLR8 stimulation of NK-DC co-cultures significantly increased DC priming of EGFR-specific CD8+ T cells in the presence of cetuximab.

Discussion

VTX-2337 and cetuximab combination therapy can activate innate and adaptive anti-cancer immune responses. Further investigation in human trials will be important for determining the clinical benefit of this combination and for determining biomarkers of response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bonner JA, Harari PM, Giralt J et al (2010) Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol 11:21–28. doi:10.1016/S1470-2045(09)70311-0

    Article  PubMed  CAS  Google Scholar 

  2. Ferris RL, Jaffee EM, Ferrone S (2010) Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol 28:4390–4399. doi:10.1200/JCO.2009.27.6360

    Article  PubMed  CAS  Google Scholar 

  3. Overdijk MB, Verploegen S, van den Brakel JH, Lammerts van Bueren JJ, Vink T, van de Winkel JG, Parren PW, Bleeker WK (2011) Epidermal growth factor receptor (EGFR) antibody-induced antibody-dependent cellular cytotoxicity plays a prominent role in inhibiting tumorigenesis, even of tumor cells insensitive to EGFR signaling inhibition. J Immunol 187:3383–3390. doi:10.4049/jimmunol.1003926

    Article  PubMed  CAS  Google Scholar 

  4. Lee SC, Srivastava RM, Lopez-Albaitero A, Ferrone S, Ferris RL (2011) Natural killer (NK): dendritic cell (DC) cross talk induced by therapeutic monoclonal antibody triggers tumor antigen-specific T cell immunity. Immunol Res 50:248–254. doi:10.1007/s12026-011-8231-0

    Article  PubMed  CAS  Google Scholar 

  5. Lopez-Albaitero A, Lee SC, Morgan S, Grandis JR, Gooding WE, Ferrone S, Ferris RL (2009) Role of polymorphic Fc gamma receptor IIIa and EGFR expression level in cetuximab mediated, NK cell dependent in vitro cytotoxicity of head and neck squamous cell carcinoma cells. Cancer Immunol Immunother 58:1853–1864. doi:10.1007/s00262-009-0697-4

    Article  PubMed  CAS  Google Scholar 

  6. Lopez-Albaitero A, Ferris RL (2007) Immune activation by epidermal growth factor receptor specific monoclonal antibody therapy for head and neck cancer. Arch Otolaryngol Head Neck Surg 133:1277–1281. doi:10.1001/archotol.133.12.1277

    Article  PubMed  Google Scholar 

  7. McDonnell AM, Robinson BW, Currie AJ (2010) Tumor antigen cross-presentation and the dendritic cell: where it all begins? Clin Dev Immunol:539519. doi:10.1155/2010/539519

  8. Schon MP, Schon M (2008) TLR7 and TLR8 as targets in cancer therapy. Oncogene 27:190–199. doi:10.1038/sj.onc.1210913

    Article  PubMed  CAS  Google Scholar 

  9. Hamm S, Rath S, Michel S, Baumgartner R (2009) Cancer immunotherapeutic potential of novel small molecule TLR7 and TLR8 agonists. J Immunotoxicol 6:257–265. doi:10.3109/15476910903286733

    Article  PubMed  CAS  Google Scholar 

  10. Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL (2007) The frequency and suppressor function of CD4 + CD25highFoxp3 + T cells in the circulation of patients with squamous cell carcinoma of the head and neck. Clin Cancer Res 13:6301–6311. doi:10.1158/1078-0432.CCR-07-1403

    Article  PubMed  CAS  Google Scholar 

  11. Dudek AZ, Yunis C, Harrison LI, Kumar S, Hawkinson R, Cooley S, Vasilakos JP, Gorski KS, Miller JS (2007) First in human phase I trial of 852A, a novel systemic toll-like receptor 7 agonist, to activate innate immune responses in patients with advanced cancer. Clin Cancer Res 13:7119–7125. doi:10.1158/1078-0432.CCR-07-1443

    Article  PubMed  CAS  Google Scholar 

  12. Dummer R, Hauschild A, Becker JC et al (2008) An exploratory study of systemic administration of the toll-like receptor-7 agonist 852A in patients with refractory metastatic melanoma. Clin Cancer Res 14:856–864. doi:10.1158/1078-0432.CCR-07-1938

    Article  PubMed  CAS  Google Scholar 

  13. Smits EL, Ponsaerts P, Berneman ZN, Van Tendeloo VF (2008) The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 13:859–875. doi:10.1634/theoncologist.2008-0097

    Article  PubMed  CAS  Google Scholar 

  14. Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19:24–32. doi:10.1016/j.smim.2006.12.004

    Article  PubMed  CAS  Google Scholar 

  15. Diebold SS (2008) Recognition of viral single-stranded RNA by toll-like receptors. Adv Drug Deliv Rev 60:813–823. doi:10.1016/j.addr.2007.11.004

    Article  PubMed  CAS  Google Scholar 

  16. Lombardi V, Van Overtvelt L, Horiot S, Moingeon P (2009) Human dendritic cells stimulated via TLR7 and/or TLR8 induce the sequential production of Il-10, IFN-gamma, and IL-17A by naive CD4 + T cells. J Immunol 182:3372–3379. doi:10.4049/jimmunol.0801969

    Article  PubMed  CAS  Google Scholar 

  17. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537

    PubMed  CAS  Google Scholar 

  18. Lu H, Dietsch GN, Matthews MA et al (2012) VTX-2337 is a novel TLR8 agonist that activates NK cells and augments ADCC. Clin Cancer Res 18:499–509. doi:10.1158/1078-0432.CCR-11-1625

    Article  PubMed  CAS  Google Scholar 

  19. Andrade Filho PA, Lopez-Albaitero A, Gooding W, Ferris RL (2010) Novel immunogenic HLA-A*0201-restricted epidermal growth factor receptor-specific T-cell epitope in head and neck cancer patients. J Immunother 33:83–91. doi:10.1097/CJI.0b013e3181b8f421

    Article  PubMed  CAS  Google Scholar 

  20. Lebwohl M, Dinehart S, Whiting D, Lee PK, Tawfik N, Jorizzo J, Lee JH, Fox TL (2004) Imiquimod 5% cream for the treatment of actinic keratosis: results from two phase III, randomized, double-blind, parallel group, vehicle-controlled trials. J Am Acad Dermatol 50:714–721. doi:10.1016/j.jaad.2003.12.010

    Article  PubMed  Google Scholar 

  21. Oldfield V, Keating GM, Perry CM (2005) Imiquimod: in superficial basal cell carcinoma. Am J Clin Dermatol 6:195–200; discussion 1–2

    Google Scholar 

  22. Sauder DN, Smith MH, Senta-McMillian T, Soria I, Meng TC (2003) Randomized, single-blind, placebo-controlled study of topical application of the immune response modulator resiquimod in healthy adults. Antimicrob Agents Chemother 47:3846–3852

    Article  PubMed  CAS  Google Scholar 

  23. Hart OM, Athie-Morales V, O’Connor GM, Gardiner CM (2005) TLR7/8-mediated activation of human NK cells results in accessory cell-dependent IFN-gamma production. J Immunol 175:1636–1642

    PubMed  CAS  Google Scholar 

  24. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529. doi:10.1126/science.1093620

    Article  PubMed  CAS  Google Scholar 

  25. Okamura H, Tsutsi H, Komatsu T et al (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378:88–91. doi:10.1038/378088a0

    Article  PubMed  CAS  Google Scholar 

  26. Xu M, Mizoguchi I, Morishima N, Chiba Y, Mizuguchi J, Yoshimoto T (2010) Regulation of antitumor immune responses by the IL-12 family cytokines, IL-12, IL-23, and IL-27. Clin Dev Immunol. doi:10.1155/2010/832454

  27. Ahlgrimm M, Pfreundschuh M, Kreuz M, Regitz E, Preuss KD, Bittenbring J (2011) The impact of Fc-gamma receptor polymorphisms in elderly patients with diffuse large B-cell lymphoma treated with CHOP with or without rituximab. Blood 118:4657–4662. doi:10.1182/blood-2011-04-346411

    Article  PubMed  CAS  Google Scholar 

  28. Bergmann C, Strauss L, Wang Y, Szczepanski MJ, Lang S, Johnson JT, Whiteside TL (2008) T regulatory type 1 cells in squamous cell carcinoma of the head and neck: mechanisms of suppression and expansion in advanced disease. Clin Cancer Res 14:3706–3715. doi:10.1158/1078-0432.CCR-07-5126

    Article  PubMed  CAS  Google Scholar 

  29. Whiteside TL (1998) Immune cells in the tumor microenvironment. Mechanisms responsible for functional and signaling defects. Adv Exp Med Biol 451:167–171

    Article  PubMed  CAS  Google Scholar 

  30. Peng G, Guo Z, Kiniwa Y et al (2005) Toll-like receptor 8-mediated reversal of CD4 + regulatory T cell function. Science 309:1380–1384. doi:10.1126/science.1113401

    Article  PubMed  CAS  Google Scholar 

  31. Hiroishi K, Eguchi J, Baba T et al (2010) Strong CD8(+) T-cell responses against tumor-associated antigens prolong the recurrence-free interval after tumor treatment in patients with hepatocellular carcinoma. J Gastroenterol 45:451–458. doi:10.1007/s00535-009-0155-2

    Article  PubMed  CAS  Google Scholar 

  32. Srivastava RM, Lee SC, Andrade Filho PA et al (2013) Cetuximab-activated natural killer and dendritic cells collaborate to trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res 19:1858–1872. doi:10.1158/1078-0432.CCR-12-2426

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Robert L. Ferris: R01 DE19727, P50 CA097190, P30 CA047904. Ryan M. Stephenson: Doris Duke Charitable Foundation Clinical Research Fellow.

Conflict of interest

Maura Matthews, Gregory Dietsch, and Robert Hershberg are employees of VentiRx® Pharmaceuticals. Other authors have no conflicts to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert L. Ferris.

Additional information

Ryan M. Stephenson and Chwee Ming Lim contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephenson, R.M., Lim, C.M., Matthews, M. et al. TLR8 stimulation enhances cetuximab-mediated natural killer cell lysis of head and neck cancer cells and dendritic cell cross-priming of EGFR-specific CD8+ T cells. Cancer Immunol Immunother 62, 1347–1357 (2013). https://doi.org/10.1007/s00262-013-1437-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-013-1437-3

Keywords

Navigation