Skip to main content

Advertisement

Log in

MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Approximately half of patients with stage IV neuroblastoma are expected to relapse despite current therapy, and when this occurs, there is little likelihood of achieving a cure. Very few clinical trials have been conducted to determine whether cellular immune responses could be harnessed to fight this tumor, largely because potential tumor antigens for cytotoxic T lymphocytes (CTL) are limited. MAGE-A1, MAGE-A3, and NY-ESO-1 are cancer-testis (CT) antigens expressed on a number of malignant solid tumors, including neuroblastoma, but many tumor cell lines down-regulate the expression of CT antigens as well as major histocompatibility (MHC) antigens, precluding recognition by antigen-specific T cells. If expression of cancer antigens on neuroblastoma could be enhanced pharmacologically, CT antigen-specific immunotherapy could be considered for this tumor. We have demonstrated that the expression of MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells following exposure to pharmacologic levels of the demethylating agent 5-aza-2′-deoxycytidine (decitabine, DAC). Expression of NY-ESO-1, MAGE-A1, or MAGE-A3 was induced in 10/10 neuroblastoma cell lines after 5 days of exposure to DAC. Culture of neuroblastoma cell lines with IFN-γ was also associated with an increased expression of either MHC Class I or II by cytofluorometry, as reported by other groups. MAGE-A1, MAGE-A3, and NY-ESO-1-specific CTL were cultured from volunteer donors by stimulating peripheral blood mononuclear cells with dendritic cells pulsed with overlapping peptide mixes derived from full-length proteins, and these CTL preferentially lysed HLA partially matched, DAC-treated neuroblastoma and glioblastoma cell lines. These studies show that demethylating chemotherapy can be combined with IFN-γ to increase the expression of CT antigens and MHC molecules on neuroblastoma cells, and pre-treatment with these agents makes tumor cell lines more susceptible to CTL-mediated killing. These data provide a basis to consider the use of demethylating chemotherapy in neuroblastoma patients, in conjunction with immune therapies that facilitate the expansion of CT antigen-specific CTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216

    Article  PubMed  CAS  Google Scholar 

  2. Ploegh HL (1998) Viral strategies of immune evasion. Science 280:248–253

    Article  PubMed  CAS  Google Scholar 

  3. Wolfl M, Jungbluth AA, Garrido F, Cabrera T, Meyen-Southard S, Spitz R, Ernestus K, Berthold F (2005) Expression of MHC class I, MHC class II, and cancer germline antigens in neuroblastoma. Cancer Immunol Immunother 54:400–406

    Article  PubMed  Google Scholar 

  4. Jungbluth AA, Antonescu CR, Busam KJ, Iversen K, Kolb D, Coplan K, Chen YT, Stockert E, Ladanyi M, Old LJ (2001) Monophasic and biphasic synovial sarcomas abundantly express cancer/testis antigen NY-ESO-1 but not MAGE-A1 or CT7. Int J Cancer 94:252–256

    Article  PubMed  CAS  Google Scholar 

  5. Barrow C, Browning J, MacGregor D, Davis ID, Sturrock S, Jungbluth AA, Cebon J (2006) Tumor antigen expression in melanoma varies according to antigen and stage. Clin Cancer Res 12:764–771

    Article  PubMed  CAS  Google Scholar 

  6. Chianese-Bullock KA, Pressley J, Garbee C, Hibbitts S, Murphy C, Yamshchikov G, Petroni GR, Bissonette EA, Neese PY, Grosh WW et al (2005) MAGE-A1-, MAGE-A10-, and gp100-derived peptides are immunogenic when combined with granulocyte-macrophage colony-stimulating factor and montanide ISA-51 adjuvant and administered as part of a multipeptide vaccine for melanoma. J Immunol 174:3080–3086

    PubMed  CAS  Google Scholar 

  7. Carrasco J, Van Pel A, Neyns B, Lethe B, Brasseur F, Renkvist N, van der Bruggen P, van Baren N, Paulus R, Thielemans K et al (2008) Vaccination of a melanoma patient with mature dendritic cells pulsed with MAGE-3 peptides triggers the activity of nonvaccine anti-tumor cells. J Immunol 180:3585–3593

    PubMed  CAS  Google Scholar 

  8. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den Driesch P et al (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190:1669–1678

    Article  PubMed  CAS  Google Scholar 

  9. Jager E, Gnjatic S, Nagata Y, Stockert E, Jager D, Karbach J, Neumann A, Rieckenberg J, Chen YT, Ritter G et al (2000) Induction of primary NY-ESO-1 immunity: CD8+ T lymphocyte and antibody responses in peptide-vaccinated patients with NY-ESO-1+ cancers. Proc Natl Acad Sci USA 97:12198–12203

    Article  PubMed  CAS  Google Scholar 

  10. Chen Q, Jackson H, Shackleton M, Parente P, Hopkins W, Sturrock S, MacGregor D, Maraskovsky E, Tai TY, Dimopoulos N et al (2005) Characterization of antigen-specific CD8+ T lymphocyte responses in skin and peripheral blood following intradermal peptide vaccination. Cancer Immun 5:5

    PubMed  Google Scholar 

  11. Bender A, Karbach J, Neumann A, Jager D, Al-Batran SE, Atmaca A, Weidmann E, Biskamp M, Gnjatic S, Pan L et al (2007) LUD 00–009: phase 1 study of intensive course immunization with NY-ESO-1 peptides in HLA-A2 positive patients with NY-ESO-1-expressing cancer. Cancer Immun 7:16

    PubMed  Google Scholar 

  12. Mackensen A, Herbst B, Chen JL, Kohler G, Noppen C, Herr W, Spagnoli GC, Cerundolo V, Lindemann A (2000) Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34(+) hematopoietic progenitor cells. Int J Cancer 86:385–392

    Article  PubMed  CAS  Google Scholar 

  13. Razin A, Riggs AD (1980) DNA methylation and gene function. Science 210:604–610

    Article  PubMed  CAS  Google Scholar 

  14. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB, Sidransky D (1995) 5’ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med 1:686–692

    Article  PubMed  CAS  Google Scholar 

  15. Yang H, Hoshino K, Sanchez-Gonzalez B, Kantarjian H, Garcia-Manero G (2005) Antileukemia activity of the combination of 5-aza-2’-deoxycytidine with valproic acid. Leuk Res 29:739–748

    Article  PubMed  CAS  Google Scholar 

  16. Garcia-Manero G, Gore SD (2005) Future directions for the use of hypomethylating agents. Semin Hematol 42:S50–S59

    Article  PubMed  CAS  Google Scholar 

  17. Issa JP, Gharibyan V, Cortes J, Jelinek J, Morris G, Verstovsek S, Talpaz M, Garcia-Manero G, Kantarjian HM (2005) Phase II study of low-dose decitabine in patients with chronic myelogenous leukemia resistant to imatinib mesylate. J Clin Oncol 23:3948–3956

    Article  PubMed  CAS  Google Scholar 

  18. Adair SJ, Hogan K (2009) Treatment of ovarian cancer cell lines with 5-aza-2’-deoxycytidine upregulates the expression of cancer-testis antigens and class I major histocompatibility complex-encoded molecules. Cancer Immunol Immunother 58:589–601

    Article  PubMed  CAS  Google Scholar 

  19. Schrump DS, Fischette MR, Nguyen DM, Zhao M, Li X, Kunst TF, Hancox A, Hong JA, Chen GA, Pishchik V et al (2006) Phase I study of decitabine-mediated gene expression in patients with cancers involving the lungs, esophagus, or pleura. Clin Cancer Res 12:5777–5785

    Article  PubMed  CAS  Google Scholar 

  20. Serrano A, Tanzarella S, Lionello I, Mendez R, Traversari C, Ruiz-Cabello F, Garrido F (2001) Rexpression of HLA class I antigens and restoration of antigen-specific CTL response in melanoma cells following 5-aza-2′-deoxycytidine treatment. Int J Cancer 94:243–251

    Article  PubMed  CAS  Google Scholar 

  21. Sigalotti L, Altomonte M, Colizzi F, Degan M, Rupolo M, Zagonel V, Pinto A, Gattei V, Maio M (2003) 5-Aza-2′-deoxycytidine (decitabine) treatment of hematopoietic malignancies: a multimechanism therapeutic approach? Blood 101:4644–4646; discussion 4645–4646

    Google Scholar 

  22. Natsume A, Wakabayashi T, Tsujimura K, Shimato S, Ito M, Kuzushima K, Kondo Y, Sekido Y, Kawatsura H, Narita Y, Yoshida J (2008) The DNA demethylating agent 5-aza-2′-deoxycytidine activates NY-ESO-1 antigenicity in orthotopic human glioma. Int J Cancer 122:2542–2553

    Article  PubMed  CAS  Google Scholar 

  23. Gross N, Beck D, Favre S, Carrel S (1987) In vitro antigenic modulation of human neuroblastoma cells induced by IFN-gamma, retinoic acid and dibutyryl cyclic AMP. Int J Cancer 39:521–529

    Article  PubMed  CAS  Google Scholar 

  24. Ponzoni M, Guarnaccia F, Corrias MV, Cornaglia-Ferraris P (1993) Uncoordinate induction and differential regulation of HLA class-I and class-II expression by gamma-interferon in differentiating human neuroblastoma cells. Int J Cancer 55:817–823

    Article  PubMed  CAS  Google Scholar 

  25. Su S, Vivier RG, Dickson MC, Thomas N, Kendrick MK, Williamson NM, Anson JG, Houston JG, Craig FF (1997) High-throughput RT-PCR analysis of multiple transcripts using a microplate RNA isolation procedure. Biotechniques 22:1107–1113

    PubMed  CAS  Google Scholar 

  26. Tajima K, Obata Y, Tamaki H, Yoshida M, Chen YT, Scanlan MJ, Old LJ, Kuwano H, Takahashi T, Mitsudomi T (2003) Expression of cancer/testis (CT) antigens in lung cancer. Lung Cancer 42:23–33

    Article  PubMed  Google Scholar 

  27. Gaugler B, Van den Eynde B, van der Bruggen P, Romero P, Gaforio JJ, De Plaen E, Lethe B, Brasseur F, Boon T (1994) Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 179:921–930

    Article  PubMed  CAS  Google Scholar 

  28. Riddell SR, Greenberg PD (1990) The use of anti-CD3 and anti-CD28 monoclonal antibodies to clone and expand human antigen-specific T cells. J Immunol Methods 128:189–201

    Article  PubMed  CAS  Google Scholar 

  29. Levine BL, Bernstein WB, Aronson NE, Schlienger K, Cotte J, Perfetto S, Humphries MJ, Ratto-Kim S, Birx DL, Steffens C et al (2002) Adoptive transfer of costimulated CD4+ T cells induces expansion of peripheral T cells and decreased CCR5 expression in HIV infection. Nat Med 8:47–53

    Article  PubMed  CAS  Google Scholar 

  30. Sun Q, Burton RL, Dai LJ, Britt WJ, Lucas KG (2000) B lymphoblastoid cell lines as efficient APC to elicit CD8+ T cell responses against a cytomegalovirus antigen. J Immunol 165:4105–4111

    PubMed  CAS  Google Scholar 

  31. Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD (2006) In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 310:40–52

    Article  PubMed  CAS  Google Scholar 

  32. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535

    Article  PubMed  CAS  Google Scholar 

  33. Boon T, Cerottini JC, Van den Eynde B, van der Bruggen P, Van Pel A (1994) Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 12:337–365

    Article  PubMed  CAS  Google Scholar 

  34. Chen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, Williamson B, Stockert E, Pfreundschuh M, Old LJ (1997) A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci USA 94:1914–1918

    Article  PubMed  CAS  Google Scholar 

  35. Vaughan HA, Svobodova S, Macgregor D, Sturrock S, Jungbluth AA, Browning J, Davis ID, Parente P, Chen YT, Stockert E et al (2004) Immunohistochemical and molecular analysis of human melanomas for expression of the human cancer-testis antigens NY-ESO-1 and LAGE-1. Clin Cancer Res 10:8396–8404

    Article  PubMed  CAS  Google Scholar 

  36. Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardization, and commentary. Cancer Immun 4:1

    PubMed  Google Scholar 

  37. Rodolfo M, Luksch R, Stockert E, Chen YT, Collini P, Ranzani T, Lombardo C, Dalerba P, Rivoltini L, Arienti F et al (2003) Antigen-specific immunity in neuroblastoma patients: antibody and T-cell recognition of NY-ESO-1 tumor antigen. Cancer Res 63:6948–6955

    PubMed  CAS  Google Scholar 

  38. Davis ID, Chen W, Jackson H, Parente P, Shackleton M, Hopkins W, Chen Q, Dimopoulos N, Luke T, Murphy R et al (2004) Recombinant NY-ESO-1 protein with ISCOMATRIX adjuvant induces broad integrated antibody and CD4(+) and CD8(+) T cell responses in humans. Proc Natl Acad Sci USA 101:10697–10702

    Article  PubMed  CAS  Google Scholar 

  39. Fulda S, Debatin KM (2006) 5-Aza-2′-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8. Oncogene 25:5125–5133

    Article  PubMed  CAS  Google Scholar 

  40. Ponzoni M, Lanciotti M, Montaldo PG, Cornaglia-Ferraris P (1991) Gamma-interferon, retinoic acid, and cytosine arabinoside induce neuroblastoma differentiation by different mechanisms. Cell Mol Neurobiol 11:397–413

    Article  PubMed  CAS  Google Scholar 

  41. Gross N, Beck D, Favre S (1990) In vitro modulation and relationship between N-myc and HLA class I RNA steady-state levels in human neuroblastoma cells. Cancer Res 50:7532–7536

    PubMed  CAS  Google Scholar 

  42. Miller CH, Maher SG, Young HA (2009) Clinical use of interferon-gamma. Ann NY Acad Sci 1182:69–79

    Article  PubMed  CAS  Google Scholar 

  43. Wolfl M, Kuball J, Ho WY, Nguyen H, Manley TJ, Bleakley M, Greenberg PD (2007) Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110:201–210

    Article  PubMed  CAS  Google Scholar 

  44. Ramakrishnan R, Assudani D, Nagaraj S, Hunter T, Cho HI, Antonia S, Altiok S, Celis E, Gabrilovich DI (2010) Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J Clin Invest 120:1111–1124

    Article  PubMed  CAS  Google Scholar 

  45. Samlowski WE, Leachman SA, Wade M, Cassidy P, Porter-Gill P, Busby L, Wheeler R, Boucher K, Fitzpatrick F, Jones DA, Karpf AR (2005) Evaluation of a 7-day continuous intravenous infusion of decitabine: inhibition of promoter-specific and global genomic DNA methylation. J Clin Oncol 23:3897–3905

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the Four Diamonds Fund of The Pennsylvania State University College of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Bao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, L., Dunham, K. & Lucas, K. MAGE-A1, MAGE-A3, and NY-ESO-1 can be upregulated on neuroblastoma cells to facilitate cytotoxic T lymphocyte-mediated tumor cell killing. Cancer Immunol Immunother 60, 1299–1307 (2011). https://doi.org/10.1007/s00262-011-1037-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-011-1037-z

Keywords

Navigation