Skip to main content

Advertisement

Log in

Natural antibodies against nerve growth factor inhibit in vitro prostate cancer cell metastasis

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Prostate cancer is a major cause of death in older men, and bone metastasis is the primary cause of morbidity and mortality in prostate cancer. Prostate is an abundant source of nerve growth factor (NGF) that is secreted by malignant epithelial cells and utilized as an important autocrine factor for growth and metastasis. We previously showed that intravenous gammaglobulin (IVIg) contains natural antibodies against NGF, which inhibit growth and differentiation of the NGF-dependent cell line PC-12. In the present study, we examined the effects of these natural antibodies on in vitro migration or metastasis of two prostate cancer cell lines namely DU-145 and PC-3. Cancer cell migration was assessed using these cell lines in the upper chambers of Matrigel invasion chambers. The effects of IVIg and affinity-purified anti-NGF antibodies on cell migration through membrane into the lower chamber were assessed in dose/response experiments by a colorimetric method. Affinity-purified natural IgG anti-NGF antibody inhibited DU-145 migration by 38% (p = 0.01) and PC-3 migration by 25% (p = 0.02); whereas, a monoclonal anti-NGF antibody inhibited DU-145 migration by 40% (p = 0.01) and PC-3 migration by 37% (p = 0.02), at the same concentration. When IVIg was depleted of NGF-specific IgG by affinity chromatography, there was no significant inhibition of migration of the DU-145 and PC-3 cells at a concentration of 1 mg/well. Removal of the NGF-specific antibody from the IVIg was also demonstrated by a lack of effect on PC-12 cell differentiation. Therefore, IVIg is able to inhibit the migration of prostate cancer cell lines, through Matrigel chambers in vitro, only when the natural NGF-specific antibodies actively are present in IVIg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ECM:

Extracellular matrix

IL-12:

Interleukin-12

IVIg:

Intravenous gammaglobulin

MEM:

Minimal essential medium

NGF:

Nerve growth factor

NTR:

Neurotrophin receptor

OD:

Optical density

TrKA:

Tyrosine kinase A

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, CA Cancer J Clin 59(4):225–249

    Article  PubMed  Google Scholar 

  2. Culig Z, Hobisch A, Cronauer MV et al (1996) Regulation of prostatic growth and function by peptide growth factors. Prostate 28(6):392–405

    Article  CAS  PubMed  Google Scholar 

  3. Bonfil RD, Chinni S, Fridman R, Kim HR, Cher ML (2007) Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urol Oncol 25(5):407–411

    CAS  PubMed  Google Scholar 

  4. Jacob K, Webber M, Benayahu D, Kleinman HK (1999) Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Res 59(17):4453–4457

    CAS  PubMed  Google Scholar 

  5. Angelucci A, Festuccia C, D’Andrea G, Teti A, Bologna M (2002) Osteopontin modulates prostate carcinoma invasive capacity through RGD-dependent upregulation of plasminogen activators. Biol Chem 383(1):229–234

    Article  CAS  PubMed  Google Scholar 

  6. Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM (2002) Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res 62(10):2942–2950

    CAS  PubMed  Google Scholar 

  7. Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25(2):276–308

    Article  CAS  PubMed  Google Scholar 

  8. Chinni SR, Sivalogan S, Dong Z, Filho JC, Deng X, Bonfil RD, Cher ML (2006) CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate 66(1):32–48

    Article  CAS  PubMed  Google Scholar 

  9. Luo Y, He DL, Ning L et al (2006) Over-expression of hypoxia-inducible factor-1alpha increases the invasive potency of LNCaP cells in vitro. BJU Int 98(6):1315–1319

    Article  CAS  PubMed  Google Scholar 

  10. Lambiase A, Micera A, Sgrulletta R, Bonini S, Bonini S (2004) Nerve growth factor and the immune system: old and new concepts in the cross-talk between immune and resident cells during pathophysiological conditions. Curr Opin Allergy Clin Immunol 4(5):425–430

    Article  CAS  PubMed  Google Scholar 

  11. Tometten M, Blois S, Arck PC (2005) Nerve growth factor in reproductive biology: link between the immune, endocrine and nervous system? Chem Immunol Allergy 89:135–148

    Article  CAS  PubMed  Google Scholar 

  12. Nockher WA, Renz H (2006) Neurotrophins in allergic diseases: from neuronal growth factors to intercellular signaling molecules. J Allergy Clin Immunol 117(3):583–589

    Article  CAS  PubMed  Google Scholar 

  13. Nockher WA, Renz H (2006) Neurotrophins and asthma: novel insight into neuroimmune interaction. J Allergy Clin Immunol 117(1):67–71

    Article  CAS  PubMed  Google Scholar 

  14. Linker R, Gold R, Luhder F (2009) Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Crit Rev Immunol 29(1):43–68

    CAS  PubMed  Google Scholar 

  15. Abram M, Wegmann M, Fokuhl V et al (2009) Nerve growth factor and neurotrophin-3 mediate survival of pulmonary plasma cells during the allergic airway inflammation. J Immunol 182(8):4705–4712

    Article  CAS  PubMed  Google Scholar 

  16. Krüttgen A, Schneider I, Weis J (2006) The dark side of the NGF family: neurotrophins in neoplasias. Brain Pathol 16(4):304–310

    Article  PubMed  Google Scholar 

  17. Papatsoris AG, Liolitsa D, Deliveliotis C (2007) Manipulation of the nerve growth factor network in prostate cancer. Expert Opin Investig Drugs 16(3):303–309 (Review)

    Article  CAS  PubMed  Google Scholar 

  18. Djakiew D, Delsite R, Pflug B, Wrathall J, Lynch JH, Onoda M (1991) Regulation of growth by a nerve growth factor-like protein which modulates paracrine interactions between a neoplastic epithelial cell line and stromal cells of the human prostate. Cancer Res 51(12):3304–3310

    CAS  PubMed  Google Scholar 

  19. Delsite R, Djakiew D (1999) Characterization of nerve growth factor precursor protein expression by human prostate stromal cells: a role in selective neurotrophin stimulation of prostate epithelial cell growth. Prostate 41(1):39–48

    Article  CAS  PubMed  Google Scholar 

  20. Dalal R, Djakiew D (1997) Molecular characterization of neurotrophin expression and the corresponding tropomyosin receptor kinases (trks) in epithelial and stromal cells of the human prostate. Mol Cell Endocrinol 134(1):15–22

    Article  CAS  PubMed  Google Scholar 

  21. Pflug BR, Dionne C, Kaplan DR, Lynch J, Djakiew D (1995) Expression of a Trk high affinity nerve growth factor receptor in the human prostate. Endocrinology 136(1):262–268

    Article  CAS  PubMed  Google Scholar 

  22. Pflug BR, Onoda M, Lynch JH, Djakiew D (1992) Reduced expression of the low affinity nerve growth factor receptor in benign and malignant human prostate tissue and loss of expression in four human metastatic prostate tumor cell lines. Cancer Res 52(19):5403–5406

    CAS  PubMed  Google Scholar 

  23. Geldof AA, De Kleijn MA, Rao BR, Newling DW (1997) Nerve growth factor stimulates in vitro invasive capacity of DU145 human prostatic cancer cells. J Cancer Res Clin Oncol 123(2):107–112

    Article  CAS  PubMed  Google Scholar 

  24. Walch ET, Marchetti D (1999) Role of neurotrophins and neurotrophins receptors in the in vitro invasion and heparanase production of human prostate cancer cells. Clin Exp Metastasis 17(4):307–314

    Article  CAS  PubMed  Google Scholar 

  25. Krygier S, Djakiew D (2001) Molecular characterization of the loss of p75(NTR) expression in human prostate tumor cells. Mol Carcinog 31(1):46–55

    Article  CAS  PubMed  Google Scholar 

  26. Krygier S, Djakiew D (2002) Neurotrophin receptor p75(NTR) suppresses growth and nerve growth factor-mediated metastasis of human prostate cancer cells. Int J Cancer 98(1):1–7

    Article  CAS  PubMed  Google Scholar 

  27. Festuccia C, Muzi P, Gravina GL et al (2007) Tyrosine kinase inhibitor CEP-701 blocks the NTRK1/NGF receptor and limits the invasive capability of prostate cancer cells in vitro. Int J Oncol 30(1):193–200

    CAS  PubMed  Google Scholar 

  28. Warrington RJ, Lewis KE (2007) Biologically active anti-nerve growth factor antibodies in commercial intravenous gammaglobulin. J Autoimmun 28(1):24–29

    Article  CAS  PubMed  Google Scholar 

  29. Halvorson KG, Kubota K, Sevcik MA et al (2005) A blocking antibody to nerve growth factor attenuates skeletal pain induced by prostate tumor cells growing in bone. Cancer Res 65(20):9426–9435

    Article  CAS  PubMed  Google Scholar 

  30. Miknyoczki SJ, Wan W, Chang H et al (2002) The neurotrophin–trk receptor axes are critical for the growth, progression of human prostatic carcinoma, pancreatic ductal adenocarcinoma xenografts in nude mice. Clin Cancer Res 8(6):1924–1931

    CAS  PubMed  Google Scholar 

  31. Schachter J, Katz U, Mahrer A et al (2007) Efficacy and safety of intravenous immunoglobulin in patients with metastatic melanoma. Ann N Y Acad Sci 1110:305–314

    Article  CAS  PubMed  Google Scholar 

  32. Damianovich M, Solomon AS, Blank M, Shoenfeld Y (2007) Attenuation of colon carcinoma tumor spread by intravenous immunoglobulin. Ann N Y Acad Sci 1110:567–577

    Article  CAS  PubMed  Google Scholar 

  33. Fishman P, Bar-Yehuda S, Shoenfeld Y (2002) IVIg to prevent tumor metastases. Int J Oncol 21(4):875–880

    CAS  PubMed  Google Scholar 

  34. Muir D, Sukhu L, Johnson J, Lahorra MA, Maria BL (1993) Quantitative methods for scoring cell migration and invasion in filter-based assays. Anal Biochem 215(1):104–109

    Article  CAS  PubMed  Google Scholar 

  35. Saito K, Oku T, Ata N, Miyashiro H, Hattori M, Saiki I (1997) A modified and convenient method for assessing tumor cell invasion and migration and its application to screening inhibitors. Biol Pharm Bull 20(4):345–348

    CAS  PubMed  Google Scholar 

  36. Wood P (2009) Primary antibody deficiency syndromes. Ann Clin Biochem 46(Pt 2):99–108

    Article  CAS  PubMed  Google Scholar 

  37. Darabi K, Abdel-Wahab O, Dzik WH (2006) Current usage of intravenous immune globulin and the rationale behind it: the Massachusetts General Hospital data and a review of the literature. Transfusion 46(5):741–753

    Article  CAS  PubMed  Google Scholar 

  38. Graff-Dubois S, Sibéril S, Elluru S et al (2007) Use of intravenous polyclonal immunoglobulins in autoimmune and inflammatory disorders. Transfus Clin Biol 14(1):63–68

    Article  PubMed  Google Scholar 

  39. Galeotti C, Maddur MS, Kazatchkine MD, Mouthon L, Kaveri SV (2009) Mechanisms of action of IVIG in autoimmune and inflammatory disorders: Recent developments. Transfus Clin Biol 16(2):75–79

    Article  CAS  PubMed  Google Scholar 

  40. Sarti L, Falai T, Pinto F, Tendi E, Matà S (2009) Intravenous immune globulin usage for neurological and neuromuscular disorders: an academic centre, 4 years experience. Neurol Sci 30(3):213–218

    Article  PubMed  Google Scholar 

  41. Wang X, Bauer JH, Li Y et al (2001) Characterization of a p75(NTR) apoptotic signaling pathway using a novel cellular model. J Biol Chem 276(36):33812–33820

    Article  CAS  PubMed  Google Scholar 

  42. Rabizadeh S, Bredesen DE (2003) Ten years on: mediation of cell death by the common neurotrophin receptor p75(NTR). Cytokine Growth Factor Rev 14(3–4):225–239

    Article  CAS  PubMed  Google Scholar 

  43. Khwaja F, Tabassum A, Allen J, Djakiew D (2006) The p75(NTR) tumor suppressor induces cell cycle arrest facilitating caspase mediated apoptosis in prostate tumor cells. Biochem Biophys Res Commun 341(4):1184–1192

    Article  CAS  PubMed  Google Scholar 

  44. Giraud S, Lautrette C, Bessette B, Decourt C, Mathonnet M, Jauberteau MO (2005) Modulation of Fas-induced apoptosis by p75 neurotrophin receptor in a human neuroblastoma cell line. Apoptosis 10(6):1271–1283

    Article  CAS  PubMed  Google Scholar 

  45. Weeraratna AT, Arnold JT, George DJ, DeMarzo A, Isaacs JT (2001) Rational basis for Trk inhibition therapy for prostate cancer. Prostate 45(2):140–148

    Article  Google Scholar 

  46. Sigala S, Tognazzi N, Rizzetti MC, Farzoni I, Missale C, Bonmassar E, Spano P (2002) Nerve growth factor induces the re-expression of functional androgen receptors and p75(NGFR) in the androgen-insensitive prostate cancer cell line DU145. Eur J Endocrinol 147(3):407–415

    Article  CAS  PubMed  Google Scholar 

  47. Sigala S, Faraoni I, Botticini D, Paez-Pereda M, Missale C, Bonmassar E, Spano P (1999) Suppression of telomerase, re-expression of KA11, and abrogation of tumorigenicity by nerve growth factor in Prostate Cancer cell lines. Clin Cancer Res 5:1211–1218

    CAS  PubMed  Google Scholar 

  48. Djakiew D, Pflug BR, Delsite R, Onoda M, Lynch JH, Arand G, Thompson EW (1993) Chemotaxis and chemokinesis of human prostate tumor cell lines in response to human prostate stromal cell secretory products containing a nerve growth factor-like protein. Cancer Res 53(6):1416–1420

    CAS  PubMed  Google Scholar 

  49. Delsite R, Djakiew D (1996) Anti-proliferative effect of the kinase inhibitor K252a on human prostatic carcinoma cell lines. J Androl 17(5):481–490

    CAS  PubMed  Google Scholar 

  50. Fraser FP, Salvador V, Manning EA, Mizal J, Alfun S, Raza M, Berridge RJ, Djamgoz MB (2003) Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat cancer. J Cell Physiol 195(3):479–487

    Article  CAS  PubMed  Google Scholar 

  51. Diss JK, Stewart D, Pani F, Walker MM, Patel A, Djamgoz MB (2005) A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate Cancer Prostatic Dis 8(3):266–273

    Article  CAS  PubMed  Google Scholar 

  52. Brackenbury WT, Djamgoz MB (2007) Nerve growth factor enhances voltage-gated Nat channel activity and transwell migration in Mat-LyLu rat prostate cancer cell line. J Cell Physiol 210(3):602–608

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding for this work was provided by Bayer Inc. Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard J. Warrington.

Additional information

Author Keith E. Lewis is deceased.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Warrington, R.J., Lewis, K.E. Natural antibodies against nerve growth factor inhibit in vitro prostate cancer cell metastasis. Cancer Immunol Immunother 60, 187–195 (2011). https://doi.org/10.1007/s00262-010-0934-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-010-0934-x

Keywords

Navigation