Skip to main content

Advertisement

Log in

Reduced immune effector cell NKG2D expression and increased levels of soluble NKG2D ligands in multiple myeloma may not be causally linked

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

There is limited understanding of the dysregulation of the innate immune system in multiple myeloma (MM). We analysed the expression of the activating receptor NKG2D on NK cells and T cells of MM patients and investigated the impact of soluble versus membrane-bound NKG2D ligands on the expression of NKG2D.

Design

NKG2D expression on NK cells and CD8+ αβ T cells from patients with MM or monoclonal gammopathy of uncertain significance and healthy controls was examined flow-cytometrically. Sera from patients and controls were analysed for soluble NKG2D ligands (sNKG2D ligands).

Results

Significantly fewer NK cells and CD8+ αβ T cells from patients expressed NKG2D compared to healthy controls (NK cells: median 54% interquartile range (IQR) 32–68 versus 71% IQR 44–82%, P = 0.017, CD8+ αβ T cells: median 63% IQR 52–81 versus 77% IQR 71–90%, P = 0.018). The sNKG2D ligand sMICA was increased in patients [median 175 (IQR 87–295) pg/ml] versus controls [median 80 (IQR 32–129) pg/ml, P < 0.001], but levels of sMICA did not correlate with NKG2D expression on effector cells. To elucidate the mechanism of NKG2D down-regulation, we incubated lymphocytes from healthy donors in the presence of sNKG2D ligands or in co-culture with MM cell lines. sNKG2D ligands in clinically relevant concentrations did not down-regulate NKG2D expression, but co-culture of effector cells with myeloma cells with high surface expression of NKG2D ligands reduced NKG2D expression significantly.

Conclusions

These results indicate that MM is associated with a significant reduction in NKG2D expression which may be contact-mediated rather than caused by soluble NKG2D ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harrison SJ, Cook G (2005) Immunotherapy in multiple myeloma—possibility or probability? Br J Haematol 130:344–362

    Article  CAS  PubMed  Google Scholar 

  2. Cook G, Campbell JD, Carr CE, Boyd KS, Franklin IM (1999) Transforming growth factor beta from multiple myeloma cells inhibits proliferation and IL-2 responsiveness in T lymphocytes. J Leukoc Biol 66:981–988

    CAS  PubMed  Google Scholar 

  3. Brown RD, Pope B, Murray A, Esdale W, Sze DM, Gibson J, Ho PJ, Hart D, Joshua D (2001) Dendritic cells from patients with myeloma are numerically normal but functionally defective as they fail to up-regulate CD80 (B7–1) expression after huCD40LT stimulation because of inhibition by transforming growth factor-beta1 and interleukin-10. Blood 98:2992–2998

    Article  CAS  PubMed  Google Scholar 

  4. Beyer M, Kochanek M, Giese T, Endl E, Weihrauch MR, Knolle PA, Classen S, Schultze JL (2006) In vivo peripheral expansion of naive CD4+ CD25high FoxP3+ regulatory T cells in patients with multiple myeloma. Blood 107:3940–3949

    Article  CAS  PubMed  Google Scholar 

  5. Jurisic V, Srdic T, Konjevic G, Markovic O, Colovic M (2007) Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med Oncol 24:312–317

    Article  PubMed  Google Scholar 

  6. Fauriat C, Mallet F, Olive D, Costello RT (2006) Impaired activating receptor expression pattern in natural killer cells from patients with multiple myeloma. Leukemia 20:732–733

    Article  CAS  PubMed  Google Scholar 

  7. Carbone E, Neri P, Mesuraca M, Fulciniti MT, Otsuki T, Pende D, Groh V, Spies T, Pollio G, Cosman D et al (2005) HLA class I, NKG2D, and natural cytotoxicity receptors regulate multiple myeloma cell recognition by natural killer cells. Blood 105:251–258

    Article  CAS  PubMed  Google Scholar 

  8. Girlanda S, Fortis C, Belloni D, Ferrero E, Ticozzi P, Sciorati C, Tresoldi M, Vicari A, Spies T, Groh V et al (2005) MICA expressed by multiple myeloma and monoclonal gammopathy of undetermined significance plasma cells Costimulates pamidronate-activated gammadelta lymphocytes. Cancer Res 65:7502–7508

    Article  CAS  PubMed  Google Scholar 

  9. El-Sherbiny YM, Meade JL, Holmes TD, McGonagle D, Mackie SL, Morgan AW, Cook G, Feyler S, Richards SJ, Davies FE et al (2007) The requirement for DNAM-1, NKG2D, and NKp46 in the natural killer cell-mediated killing of myeloma cells. Cancer Res 67:8444–8449

    Article  CAS  PubMed  Google Scholar 

  10. Epling-Burnette PK, Bai F, Painter JS, Rollison DE, Salih HR, Krusch M, Zou J, Ku E, Zhong B, Boulware D et al (2007) Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors. Blood 109:4816–4824

    Article  CAS  PubMed  Google Scholar 

  11. Osaki T, Saito H, Yoshikawa T, Matsumoto S, Tatebe S, Tsujitani S, Ikeguchi M (2007) Decreased NKG2D expression on CD8+ T cell is involved in immune evasion in patients with gastric cancer. Clin Cancer Res 13:382–387

    Article  CAS  PubMed  Google Scholar 

  12. Lee JC, Lee KM, Kim DW, Heo DS (2004) Elevated TGF-beta1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J Immunol 172:7335–7340

    CAS  PubMed  Google Scholar 

  13. Groh V, Wu J, Yee C, Spies T (2002) Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419:734–738

    Article  CAS  PubMed  Google Scholar 

  14. Doubrovina ES, Doubrovin MM, Vider E, Sisson RB, O’Reilly RJ, Dupont B, Vyas YM (2003) Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J Immunol 171:6891–6899

    CAS  PubMed  Google Scholar 

  15. Salih HR, Antropius H, Gieseke F, Lutz SZ, Kanz L, Rammensee HG, Steinle A (2003) Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102:1389–1396

    Article  CAS  PubMed  Google Scholar 

  16. Märten A, von Lilienfeld-Toal M, Buchler MW, Schmidt J (2006) Soluble MIC is elevated in the serum of patients with pancreatic carcinoma diminishing gammadelta T cell cytotoxicity. Int J Cancer 119:2359–2365

    Article  PubMed  Google Scholar 

  17. Rebmann V, Schutt P, Brandhorst D, Opalka B, Moritz T, Nowrousian MR, Grosse-Wilde H (2007) Soluble MICA as an independent prognostic factor for the overall survival and progression-free survival of multiple myeloma patients. Clin Immunol 123:114–120

    Article  CAS  PubMed  Google Scholar 

  18. Jinushi M, Vanneman M, Munshi NC, Tai YT, Prabhala RH, Ritz J, Neuberg D, Anderson KC, Carrasco DR, Dranoff G (2008) MHC class I chain-related protein A antibodies and shedding are associated with the progression of multiple myeloma. Proc Natl Acad Sci USA 105:1285–1290

    Article  CAS  PubMed  Google Scholar 

  19. Kyle RA, Rajkumar SV (2007) Monoclonal gammopathy of undetermined significance and smouldering multiple myeloma: emphasis on risk factors for progression. Br J Haematol 139:730–743

    Article  CAS  PubMed  Google Scholar 

  20. Rawstron AC, Davies FE, DasGupta R, Ashcroft AJ, Patmore R, Drayson MT, Owen RG, Jack AS, Child JA, Morgan GJ (2002) Flow cytometric disease monitoring in multiple myeloma: the relationship between normal and neoplastic plasma cells predicts outcome after transplantation. Blood 100:3095–3100

    Article  CAS  PubMed  Google Scholar 

  21. Vitale C, Chiossone L, Cantoni C, Morreale G, Cottalasso F, Moretti S, Pistorio A, Haupt R, Lanino E, Dini G et al (2004) The corticosteroid-induced inhibitory effect on NK cell function reflects down-regulation and/or dysfunction of triggering receptors involved in natural cytotoxicity. Eur J Immunol 34:3028–3038

    Article  CAS  PubMed  Google Scholar 

  22. Holdenrieder S, Stieber P, Peterfi A, Nagel D, Steinle A, Salih HR (2006) Soluble MICA in malignant diseases. Int J Cancer 118:684–687

    Article  CAS  PubMed  Google Scholar 

  23. Sugita J, Tanaka J, Yasumoto A, Shiratori S, Wakasa K, Kikuchi M, Shigematsu A, Kondo T, Asaka M, Imamura M (2009) Differential effects of interleukin-12 and interleukin-15 on expansion of NK cell receptor-expressing CD8(+) T cells. Ann Hematol 4:4

    Google Scholar 

  24. Boissel N, Rea D, Tieng V, Dulphy N, Brun M, Cayuela JM, Rousselot P, Tamouza R, Le Bouteiller P, Mahon FX et al (2006) BCR/ABL oncogene directly controls MHC class I chain-related molecule. A expression in chronic myelogenous leukemia. J Immunol 176:5108–5116

    CAS  PubMed  Google Scholar 

  25. Burgess SJ, Marusina AI, Pathmanathan I, Borrego F, Coligan JE (2006) IL-21 down-regulates NKG2D/DAP10 expression on human NK and CD8 + T cells. J Immunol 176:1490–1497

    CAS  PubMed  Google Scholar 

  26. Kopp HG, Placke T, Salih HR (2009) Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 69:7775–7783

    Article  CAS  PubMed  Google Scholar 

  27. Suarez-Alvarez B, Lopez-Vazquez A, Diaz-Molina B, Bernardo-Rodriguez MJ, Alvarez-Lopez R, Pascual D, Astudillo A, Martinez-Borra J, Lambert JL, Gonzalez S et al (2006) The predictive value of soluble major histocompatibility complex class I chain-related molecule A (MICA) levels on heart allograft rejection. Transplantation 82:354–361

    Article  CAS  PubMed  Google Scholar 

  28. Wiemann K, Mittrucker HW, Feger U, Welte SA, Yokoyama WM, Spies T, Rammensee HG, Steinle A (2005) Systemic NKG2D down-regulation impairs NK and CD8 T cell responses in vivo. J Immunol 175:720–729

    CAS  PubMed  Google Scholar 

  29. Oppenheim DE, Roberts SJ, Clarke SL, Filler R, Lewis JM, Tigelaar RE, Girardi M, Hayday AC (2005) Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6:928–937

    Article  CAS  PubMed  Google Scholar 

  30. Kloss M, Decker P, Baltz KM, Baessler T, Jung G, Rammensee HG, Steinle A, Krusch M, Salih HR (2008) Interaction of monocytes with NK cells upon Toll-like receptor-induced expression of the NKG2D ligand MICA. J Immunol 181:6711–6719

    CAS  PubMed  Google Scholar 

  31. Cerboni C, Ardolino M, Santoni A, Zingoni A (2009) Detuning CD8+ T lymphocytes by down-regulation of the activating receptor NKG2D: role of NKG2D ligands released by activated T cells. Blood 113:2955–2964

    Article  CAS  PubMed  Google Scholar 

  32. Kim JY, Bae JH, Lee SH, Lee EY, Chung BS, Kim SH, Kang CD (2008) Induction of NKG2D ligands and subsequent enhancement of NK cell-mediated lysis of cancer cells by arsenic trioxide. J Immunother 31:475–486

    Article  CAS  PubMed  Google Scholar 

  33. Poggi A, Catellani S, Garuti A, Pierri I, Gobbi M, Zocchi MR (2009) Effective in vivo induction of NKG2D ligands in acute myeloid leukaemias by all-trans-retinoic acid or sodium valproate. Leukemia 23:641–648

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Annette Brause and Andrea Linke for excellent technical assistance and the Institut für Experimentelle Hämatologie und Transfusionsmedizin, Universitätsklinikum Bonn, Germany, for providing buffy coats. MvLT is supported by an EBMT Amgen fellowship and by a grant from BONFOR research foundation. SF is supported by the Arnold Tunstall Research Fellowship, British Society for Haematology and the Leukaemia Research Fund.

Conflict of interest statement

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon Cook.

Additional information

M. von Lilienfeld-Toal and S. Frank contributed equally to the paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Lilienfeld-Toal, M., Frank, S., Leyendecker, C. et al. Reduced immune effector cell NKG2D expression and increased levels of soluble NKG2D ligands in multiple myeloma may not be causally linked. Cancer Immunol Immunother 59, 829–839 (2010). https://doi.org/10.1007/s00262-009-0807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0807-3

Keywords

Navigation