Skip to main content
Log in

11C-Acetate as a new biomarker for PET/CT in patients with multiple myeloma: initial staging and postinduction response assessment

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We investigated the potential value of 11C-acetate (ACT) PET/CT in characterizing multiple myeloma (MM) compared with 18F-FDG PET/CT. Bone marrow histological and whole-body (WB) MRI findings served as the reference standards.

Methods

In this prospective study, 15 untreated MM patients (10 men and 5 women, age range 48−69 years) underwent dual-tracer 11C-ACT and 18F-FDG PET/CT and WB MRI for pretreatment staging, and 13 of them had repeated examinations after induction therapy. Diffuse and focal bone marrow uptake was assessed by visual and quantitative analyses, including measurement of the maximum standardized uptake value (SUVmax). Between-group differences and correlations were assessed with the Mann-Whitney U test and the Pearson test.

Results

At staging, all 15 patients had diffuse myeloma involvement upon bone marrow examination with 30–90 % of plasma cell infiltrates. Diffuse infiltration was detected in all of them (100 %) using 11C-ACT with a positive correlation between bone marrow uptake values and percentages of plasma cell infiltrates (r = +0.63, p = 0.01). In contrast, a diagnosis of diffuse infiltration could be established using 18F-FDG in only six patients (40 %). Focal lesions were shown in 13 patients on both 11C-ACT PET/CT and WB MRI, and in 10 patients on 18F-FDG PET/CT. Focal lesions demonstrated 11C-ACT uptake with a mean SUVmax of 11.4 ± 3.3 (range 4.6−19.6, n = 59), which was significantly higher than the 18F-FDG uptake (mean SUVmax 6.6 ± 3.1, range 2.3−13.7, n = 29; p < 0.0001). After treatment, the diffuse bone marrow 11C-ACT uptake showed a mean SUVmax reduction of 66 % in patients with at least a very good partial response versus 34 % in those with at most a partial response only (p = 0.01).

Conclusion

PET/CT using 11C-ACT as a biomarker showed a higher detection rate for both diffuse and focal myeloma lesions at diagnosis than using 18F-FDG, and may be valuable for response assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rajkumar SV, Kyle RA. Multiple myeloma: diagnosis and treatment. Mayo Clin Proc. 2005;80:1371–82.

    Article  PubMed  Google Scholar 

  2. Rahmouni A, Divine M, Mathieu D, Golli M, Haioun C, Dao T, et al. MR appearance of multiple myeloma of the spine before and after treatment. AJR Am J Roentgenol. 1993;160:1053–7.

    Article  PubMed  CAS  Google Scholar 

  3. Lecouvet FE, Malghem J, Michaux L, Maldague B, Ferrant A, Michaux JL, et al. Skeletal survey in advanced multiple myeloma: radiographic versus MR imaging survey. Br J Haematol. 1999;106:35–9.

    Article  PubMed  CAS  Google Scholar 

  4. Durie BG, Salmon SE. A clinical staging system for multiple myeloma. Correlation of measured myeloma cell mass with presenting clinical features, response to treatment, and survival. Cancer. 1975;36:842–54.

    Article  PubMed  CAS  Google Scholar 

  5. Edelstyn GA, Gillespie PJ, Grebbell FS. The radiological demonstration of osseous metastases. Experimental observations. Clin Radiol. 1967;18:158–62.

    Article  PubMed  CAS  Google Scholar 

  6. Baur-Melnyk A, Buhmann S, Durr HR, Reiser M. Role of MRI for the diagnosis and prognosis of multiple myeloma. Eur J Radiol. 2005;55:56–63.

    Article  PubMed  Google Scholar 

  7. Durie BG. The role of anatomic and functional staging in myeloma: description of Durie/Salmon plus staging system. Eur J Cancer. 2006;42:1539–43.

    Article  PubMed  Google Scholar 

  8. McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST, Shanmugam M. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and GLUT11: implications for glucose transporter-directed therapy. Blood. 2012;119:4686–97.

    Article  PubMed  CAS  Google Scholar 

  9. Hillner BE, Siegel BA, Shields AF, Liu D, Gareen IF, Hunt E, et al. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the national oncologic PET registry. J Nucl Med. 2008;49:1928–35.

    Article  PubMed  Google Scholar 

  10. Durie BG, Waxman AD, D'Agnolo A, Williams CM. Whole-body (18)F-FDG PET identifies high-risk myeloma. J Nucl Med. 2002;43:1457–63.

    PubMed  Google Scholar 

  11. Zamagni E, Nanni C, Patriarca F, Englaro E, Castellucci P, Geatti O, et al. A prospective comparison of 18F-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica. 2007;92:50–5.

    Article  PubMed  Google Scholar 

  12. Haznedar R, Aki SZ, Akdemir OU, Ozkurt ZN, Ceneli O, Yagci M, et al. Value of 18F-fluorodeoxyglucose uptake in positron emission tomography/computed tomography in predicting survival in multiple myeloma. Eur J Nucl Med Mol Imaging. 2011;38:1046–53.

    Article  PubMed  CAS  Google Scholar 

  13. Derlin T, Weber C, Habermann CR, Herrmann J, Wisotzki C, Ayuk F, et al. 18F-FDG PET/CT for detection and localization of residual or recurrent disease in patients with multiple myeloma after stem cell transplantation. Eur J Nucl Med Mol Imaging. 2012;39:493–500.

    Article  PubMed  Google Scholar 

  14. Bartel TB, Haessler J, Brown TL, Shaughnessy Jr JD, van Rhee F, Anaissie E, et al. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma. Blood. 2009;114:2068–76.

    Article  PubMed  CAS  Google Scholar 

  15. Zamagni E, Patriarca F, Nanni C, Zannetti B, Englaro E, Pezzi A, et al. Prognostic relevance of 18-F FDG PET/CT in newly diagnosed multiple myeloma patients treated with up-front autologous transplantation. Blood. 2011;118:5989–95.

    Article  PubMed  CAS  Google Scholar 

  16. Dankerl A, Liebisch P, Glatting G, Friesen C, Blumstein NM, Kocot D, et al. Multiple myeloma: molecular imaging with 11C-methionine PET/CT – initial experience. Radiology. 2007;242:498–508.

    Article  PubMed  Google Scholar 

  17. Swinnen JV, Heemers H, Deboel L, Foufelle F, Heyns W, Verhoeven G. Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene. 2000;19:5173–81.

    Article  PubMed  CAS  Google Scholar 

  18. Yun M, Bang SH, Kim JW, Park JY, Kim KS, Lee JD. The importance of acetyl coenzyme A synthetase for 11C-acetate uptake and cell survival in hepatocellular carcinoma. J Nucl Med. 2009;50:1222–8.

    Article  PubMed  CAS  Google Scholar 

  19. Oyama N, Miller TR, Dehdashti F, Siegel BA, Fischer KC, Michalski JM, et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med. 2003;44:549–55.

    PubMed  CAS  Google Scholar 

  20. Mena E, Turkbey B, Mani H, Adler S, Valera VA, Bernardo M, et al. 11C-Acetate PET/CT in localized prostate cancer: a study with MRI and histopathologic correlation. J Nucl Med. 2012;53:538–45.

    Article  PubMed  CAS  Google Scholar 

  21. Higashi K, Ueda Y, Matsunari I, Kodama Y, Ikeda R, Miura K, et al. 11C-acetate PET imaging of lung cancer: comparison with 18F-FDG PET and 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging. 2004;31:13–21.

    Article  PubMed  Google Scholar 

  22. Ho CL, Yu SC, Yeung DW. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med. 2003;44:213–21.

    PubMed  Google Scholar 

  23. Ho CL, Chen S, Yeung DW, Cheng TK. Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med. 2007;48:902–9.

    Article  PubMed  CAS  Google Scholar 

  24. Khoo SH, Al-Rubeai M. Metabolic characterization of a hyper-productive state in an antibody producing NS0 myeloma cell line. Metab Eng. 2009;11:199–211.

    Article  PubMed  CAS  Google Scholar 

  25. The International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol. 2003;121:749–57.

    Article  Google Scholar 

  26. Greipp PR, San Miguel J, Durie BG, Crowley JJ, Barlogie B, Blade J, et al. International staging system for multiple myeloma. J Clin Oncol. 2005;23:3412–20.

    Article  PubMed  Google Scholar 

  27. Rajkumar SV. Multiple myeloma. Curr Probl Cancer. 2009;33:7–64.

    Article  PubMed  Google Scholar 

  28. Durie BG, Harousseau JL, Miguel JS, Blade J, Barlogie B, Anderson K, et al. International uniform response criteria for multiple myeloma. Leukemia. 2006;20:1467–73.

    Article  PubMed  CAS  Google Scholar 

  29. Pike VW, Eakins MN, Allan RM, Selwyn AP. Preparation of [1-11C] acetate – an agent for the study of myocardial metabolism by positron emission tomography. Int J Appl Radiat Isot. 1982;33:505–12.

    Article  PubMed  CAS  Google Scholar 

  30. Ng SH, Yen TC, Liao CT, Chang JT, Chan SC, Ko SF, et al. 18F-FDG PET and CT/MRI in oral cavity squamous cell carcinoma: a prospective study of 124 patients with histologic correlation. J Nucl Med. 2005;46:1136–43.

    PubMed  Google Scholar 

  31. Shon IH, Fogelman I. F18-FDG positron emission tomography and benign fractures. Clin Nucl Med. 2003;28:171–5.

    PubMed  Google Scholar 

  32. Lin C, Luciani A, Belhadj K, Maison P, Vignaud A, Deux JF, et al. Patients with plasma cell disorders examined at whole-body dynamic contrast-enhanced MR imaging: initial experience. Radiology. 2009;250:905–15.

    Article  PubMed  Google Scholar 

  33. Lin C, Luciani A, Belhadj K, Deux JF, Kuhnowski F, Maatouk M, et al. Multiple myeloma treatment response assessment with whole-body dynamic contrast-enhanced MR imaging. Radiology. 2010;254:521–31.

    Article  PubMed  Google Scholar 

  34. Ghanem N, Lohrmann C, Engelhardt M, Pache G, Uhl M, Saueressig U, et al. Whole-body MRI in the detection of bone marrow infiltration in patients with plasma cell neoplasms in comparison to the radiological skeletal survey. Eur Radiol. 2006;16:1005–14.

    Article  PubMed  Google Scholar 

  35. Baur-Melnyk A, Buhmann S, Becker C, Schoenberg SO, Lang N, Bartl R, et al. Whole-body MRI versus whole-body MDCT for staging of multiple myeloma. AJR Am J Roentgenol. 2008;190:1097–104.

    Article  PubMed  Google Scholar 

  36. Shortt CP, Gleeson TG, Breen KA, McHugh J, O'Connell MJ, O'Gorman PJ, et al. Whole-body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol. 2009;192:980–6.

    Article  PubMed  Google Scholar 

  37. Moulopoulos LA, Dimopoulos MA, Christoulas D, Kastritis E, Anagnostou D, Koureas A, et al. Diffuse MRI marrow pattern correlates with increased angiogenesis, advanced disease features and poor prognosis in newly diagnosed myeloma treated with novel agents. Leukemia. 2010;24:1206–12.

    Article  PubMed  CAS  Google Scholar 

  38. Hillengass J, Fechtner K, Weber MA, Bauerle T, Ayyaz S, Heiss C, et al. Prognostic significance of focal lesions in whole-body magnetic resonance imaging in patients with asymptomatic multiple myeloma. J Clin Oncol. 2010;28:1606–10.

    Article  PubMed  Google Scholar 

  39. Schirrmeister H, Buck AK, Bergmann L, Reske SN, Bommer M. Positron emission tomography (PET) for staging of solitary plasmacytoma. Cancer Biother Radiopharm. 2003;18:841–5.

    Article  PubMed  Google Scholar 

  40. Bredella MA, Steinbach L, Caputo G, Segall G, Hawkins R. Value of FDG PET in the assessment of patients with multiple myeloma. AJR Am J Roentgenol. 2005;184:1199–204.

    Article  PubMed  Google Scholar 

  41. Lee SM, Kim TS, Lee JW, Kwon HW, Kim YI, Kang SH, et al. Incidental finding of an 11C-acetate PET-positive multiple myeloma. Ann Nucl Med. 2010;24:41–4.

    Article  PubMed  Google Scholar 

  42. Ho C-L, Chen S, Cheng T, Leung YL, Wong KK. Preliminary assessment of 11C-acetate and 18F-FDG PET/CT for the diagnosis and management of multiple myeloma. Society of Nuclear Medicine Annual Meeting Abstracts. 2011;52:369.

    Google Scholar 

  43. Cheung TT, Ho CL, Lo CM, Chen S, Chan SC, Chok KS, et al. 11C-acetate and 18F-FDG PET/CT for clinical staging and selection of patients with hepatocellular carcinoma for liver transplantation on the basis of Milan criteria: surgeon's perspective. J Nucl Med. 2013;54:192–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Chang Gung Memorial Hospital under grants CMRPG392041, CMRPG392042, CMRPG3A1231, and CMRPG3A1232.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tzu-Chen Yen.

Additional information

Chieh Lin and Chi-Lai Ho contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, C., Ho, CL., Ng, SH. et al. 11C-Acetate as a new biomarker for PET/CT in patients with multiple myeloma: initial staging and postinduction response assessment. Eur J Nucl Med Mol Imaging 41, 41–49 (2014). https://doi.org/10.1007/s00259-013-2520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2520-x

Keywords

Navigation