Skip to main content
Log in

Intravesikale Therapie nicht muskelinvasiver Blasentumoren mit onkolytischen Vesikular-Stomatitisviren

Oncolytic vesicular stomatitis viruses as intravesical agents against non-muscle-invasive bladder cancer

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Patienten mit Hochrisikoblasentumoren, die nicht auf eine BCG-Immuntherapie ansprechen, stellen eine therapeutische Herausforderung dar. Als Second-line-Therapie wird derzeit häufig eine Kombination aus BCG plus Interferon empfohlen. Da jedoch ein Großteil aggressiv wachsender Tumoren nicht sensibel auf Interferon reagiert, käme anstatt dessen der Einsatz onkolytischer Vesikular-Stomatitisviren (VSV) in Betracht, die speziell Interferon-refraktäre Tumorzellen angreifen. In vitro töteten sowohl Wildtyp-VSV als auch ein attenuierter Subtyp, der eine gesteigerte Tumorselektivität aufweist, bevorzugt aggressiv wachsende, Interferon-resistente Blasentumorzellen. Anschließende In-vivo-Versuche in einem von uns validierten orthotopen Mausmodell konnten die viel versprechende antikanzerogene Aktivität beider Viren nach intravesikaler Gabe eindrucksvoll bestätigen. Obwohl in diesem Modell immunkompromittierte Nacktmäuse verwendet werden, zeigte sich keine virale Toxizität. Zusammenfassend scheinen frühe klinische Studien zur intravesikalen Therapie mit VSV gerechtfertigt.

Abstract

Patients with high-risk bladder cancer who do not respond to bacillus Calmette-Guerin (BCG) immunotherapy represent a significant therapeutic challenge. The addition of interferon to BCG has recently evolved as a second-line treatment option; however, many high-grade tumors are nonresponsive to interferon. Thus, replication-competent oncolytic vesicular stomatitis viruses (VSV) that selectively target interferon-refractory tumors are promising intravesical agents. In vitro, wild-type VSV as well as a mutant variant (AV3) that has an impaired ability to shut down innate immunity preferentially killed undifferentiated, interferon-nonresponsive bladder cancer cells. Testing of these viruses in an orthotopic murine model of high-grade bladder cancer, which we have recently validated, revealed that both AV3 and wild-type VSV significantly inhibited orthotopic tumor growth. Despite the use of immunocompromised nude mice, there was no evidence of toxicity. In conclusion, VSV instillation therapy demonstrated strong antitumor activity and safety in an orthotopic model of high-risk disease. These findings provide preclinical proof-of-principle for the intravesical use of VSV, especially in interferon-refractory patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

BCG:

Bacillus Calmette-Guérin

BLI:

Biolumineszenzbildgebung

VSV:

Vesicular-Stomatitisvirus

IFN:

Interferon

pfu:

plaqueformende Einheiten

ph/s:

Photonen pro Sekunde

WT:

Wildtyp

Literatur

  1. Ahmed M, Cramer SD, Lyles DS (2004) Sensitivity of prostate tumors to wild type and M protein mutant vesicular stomatitis viruses. Virology 330: 34–49

    Article  PubMed  CAS  Google Scholar 

  2. Benedict WF, Tao Z, Kim CS et al. (2004) Intravesical Ad-IFNalpha causes marked regression of human bladder cancer growing orthotopically in nude mice and overcomes resistance to IFN-alpha protein. Mol Ther 10: 525–532

    Article  PubMed  CAS  Google Scholar 

  3. Breitbach CJ, Paterson JM, Lemay CG et al. (2007) Targeted inflammation during oncolytic virus therapy severely compromises tumor blood flow. Mol Ther 15: 1686–1693

    Article  PubMed  CAS  Google Scholar 

  4. Cozzi PJ, Malhotra S, McAuliffe P et al. (2001) Intravesical oncolytic viral therapy using attenuated, replication-competent herpes simplex viruses G207 and Nv1020 is effective in the treatment of bladder cancer in an orthotopic syngeneic model. FASEB J 15: 1306–1308

    PubMed  CAS  Google Scholar 

  5. Dunn GP, Bruce AT, Sheehan KC et al. (2005) A critical function for type I interferons in cancer immunoediting. Nat Immunol 6: 722–729

    Article  PubMed  CAS  Google Scholar 

  6. Gesellschaft der epidemiologischen Krebsregister in Deutschland (2006) Krebs in Deutschland, Häufigkeiten und Trends 80–83

  7. Hadaschik BA, Black PC, Sea JC et al. (2007) A validated mouse model for orthotopic bladder cancer using transurethral tumour inoculation and bioluminescence imaging. BJU Int 100: 1377–1384

    Article  PubMed  Google Scholar 

  8. Hadaschik BA, Zhang K, So AI et al. (2008) Oncolytic vesicular stomatitis viruses are potent agents for intravesical treatment of high-risk bladder cancer. Cancer Res 68: 4506–4510

    Article  PubMed  CAS  Google Scholar 

  9. Hall MC, Chang SS, Dalbagni G et al. (2007) Guideline for the management of nonmuscle invasive bladder cancer (stages Ta, T1 and Tis): 2007 update. J Urol 178: 2314–2330

    Article  PubMed  Google Scholar 

  10. Han RF, Pan JG (2006) Can intravesical bacillus Calmette-Guerin reduce recurrence in patients with superficial bladder cancer? A meta-analysis of randomized trials. Urology 67: 1216–1223

    Article  PubMed  Google Scholar 

  11. Hanel EG, Xiao Z, Wong KK et al. (2004) A novel intravesical therapy for superficial bladder cancer in an orthotopic model: oncolytic reovirus therapy. J Urol 172: 2018–2022

    Article  PubMed  CAS  Google Scholar 

  12. Herr HW, Sogani PC (2001) Does early cystectomy improve the survival of patients with high risk superficial bladder tumors? J Urol 166: 1296–1299

    Article  PubMed  CAS  Google Scholar 

  13. Lyons SK (2005) Advances in imaging mouse tumour models in vivo. J Pathol 205: 194–205

    Article  PubMed  CAS  Google Scholar 

  14. O’Donnell MA, Boehle A (2006) Treatment options for BCG failures. World J Urol 24: 481–487

    Article  Google Scholar 

  15. Pagliaro LC, Keyhani A, Williams D et al. (2003) Repeated intravesical instillations of an adenoviral vector in patients with locally advanced bladder cancer: a phase I study of p53 gene therapy. J Clin Oncol 21: 2247–2253

    Article  PubMed  CAS  Google Scholar 

  16. Papageorgiou A, Lashinger L, Millikan R et al. (2004) Role of tumor necrosis factor-related apoptosis-inducing ligand in interferon-induced apoptosis in human bladder cancer cells. Cancer Res 64: 8973–8979

    Article  PubMed  CAS  Google Scholar 

  17. Parato KA, Senger D, Forsyth PA et al. (2005) Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 5: 965–976

    Article  PubMed  CAS  Google Scholar 

  18. Power AT, Wang J, Falls TJ et al. (2007) Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol Ther 15: 123–130

    Article  PubMed  CAS  Google Scholar 

  19. Qu XJ, Yang JL, Russell PJ et al. (2004) Changes in epidermal growth factor receptor expression in human bladder cancer cell lines following interferon-alpha treatment. J Urol 172: 733–738

    Article  PubMed  CAS  Google Scholar 

  20. Ramesh N, Ge Y, Ennist DL et al. (2006) CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor – armed oncolytic adenovirus for the treatment of bladder cancer. Clin Cancer Res 12: 305–313

    Article  PubMed  CAS  Google Scholar 

  21. Stark GR, Kerr IM, Williams BR et al. (1998) How cells respond to interferons. Ann Rev Biochem 67: 227–264

    Article  PubMed  CAS  Google Scholar 

  22. Stojdl DF, Lichty B, Knowles S et al. (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6: 821–825

    Article  PubMed  CAS  Google Scholar 

  23. Stojdl DF, Lichty BD, tenOever BR et al. (2003) VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4: 263–275

    Article  PubMed  CAS  Google Scholar 

  24. Sylvester RJ, van der Meijden AP, Lamm DL (2002) Intravesical bacillus Calmette-Guerin reduces the risk of progression in patients with superficial bladder cancer: a meta-analysis of the published results of randomized clinical trials. J Urol 168: 1964–1970

    Article  PubMed  CAS  Google Scholar 

  25. Sylvester RJ, van der Meijden AP, Oosterlinck W et al. (2006) Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur Urol 49: 466–475

    Article  PubMed  Google Scholar 

  26. Vaha-Koskela MJ, Heikkila JE, Hinkkanen AE (2007) Oncolytic viruses in cancer therapy. Cancer Lett 254: 178–216

    Article  PubMed  Google Scholar 

  27. Watanabe T, Shinohara N, Sazawa A et al. (2000) An improved intravesical model using human bladder cancer cell lines to optimize gene and other therapies. Cancer Gene Ther 7: 1575–1580

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor weist auf folgende Beziehung hin: John Bell ist Mitbegründer von Jennerex Biotherapeutics, San Francisco, CA, einer Firma, die onkolytische Vaccinia-Viren entwickelt. Es besteht kein Interessenkonflikt. Der Beitrag ist unabhängig und produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.A. Hadaschik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadaschik, ., Zhang, K., So, A. et al. Intravesikale Therapie nicht muskelinvasiver Blasentumoren mit onkolytischen Vesikular-Stomatitisviren. Urologe 47, 1145–1151 (2008). https://doi.org/10.1007/s00120-008-1827-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-008-1827-x

Schlüsselwörter

Keywords

Navigation