Skip to main content

EGFR Inhibitors as Therapeutic Agents in Head and Neck Cancer

  • Chapter
  • First Online:
Molecular Determinants of Head and Neck Cancer

Part of the book series: Current Cancer Research ((CUCR))

Abstract

Squamous cell carcinoma of the head and neck (SCCHN) is one of the more challenging cancers to treat. Although great progress has been made over the years, available treatment options are still far from ideal, as epitomized by a 5-year survival rate of only 30–40 %. A unique feature of SCCHN is that elevated expression of the epidermal growth factor receptor (EGFR), a member of the ErbB receptor tyrosine kinase (RTK) family and highly relevant to oncogenic proliferation, occurs in a significant number of cases, which has prompted great interest in utilizing EGFR-targeted therapies to treat this devastating disease. Significant advances in the treatment of SCCHN have been made using EGFR-targeting monoclonal antibodies. Another class of EGFR-targeting inhibitors, tyrosine kinase inhibitors (TKIs), has also shown promise as a potential treatment option. In order to appreciate how these therapeutic agents work and why they fail when they do, it is crucial to explore the biology of the ErbB family members, the signaling pathways that are associated with them, and how they interact with each specific therapeutic agent. This chapter discusses the biology of EGFR and other ErbB family members in SCCHN, and summarizes the current status of the application of EGFR and ErbB inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Murray, S, et al. Screening for EGFR mutations in patients with head and neck cancer treated with gefitinib on a compassionate-use program: a hellenic cooperative oncology group study. J Oncol. 2010;2010:709678.

    PubMed Central  PubMed  Google Scholar 

  2. Society AC. Cancer facts & figs. 2012. http://www.cancer.org. Accessed 1 July 2012.

  3. Argiris A, et al. Head and neck cancer. Lancet. 2008;371(9625):1695–709.

    PubMed  CAS  Google Scholar 

  4. Zimmermann M, et al. The epidermal growth factor receptor (EGFR) in head and neck cancer: its role and treatment implications. Radiat Oncol. 2006;1:11.

    PubMed Central  PubMed  Google Scholar 

  5. Pignon JP, et al. Chemotherapy added to locoregional treatment for head and neck squamous-cell carcinoma: three meta-analyses of updated individual data. MACH-NC collaborative group. Meta-Analysis of chemotherapy on head and neck cancer. Lancet. 2000;355(9208):949–55.

    PubMed  CAS  Google Scholar 

  6. Bouyain S, et al. The extracellular region of ErbB4 adopts a tethered conformation in the absence of ligand. Proc Natl Acad Sci U S A. 2005;102(42):15024–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Cho HS, Leahy DJ. Structure of the extracellular region of HER3 reveals an interdomain tether. Science. 2002;297(5585):1330–3.

    PubMed  CAS  Google Scholar 

  8. Ferguson KM, et al. EGF activates its receptor by removing interactions that autoinhibit ectodomain dimerization. Mol Cell. 2003;11(2):507–17.

    PubMed  CAS  Google Scholar 

  9. Franklin MC, et al. Insights into ErbB signaling from the structure of the ErbB2-pertuzumab complex. Cancer Cell. 2004;5(4):317–28.

    PubMed  CAS  Google Scholar 

  10. Shi F, et al. ErbB3/HER3 intracellular domain is competent to bind ATP and catalyze autophosphorylation. Proc Natl Acad Sci U S A. 2010;107(17):7692–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Cho HS, et al. Structure of the extracellular region of HER2 alone and in complex with the Herceptin Fab. Nature. 2003;421(6924):756–60.

    Google Scholar 

  12. Garrett TP, et al. The crystal structure of a truncated ErbB2 ectodomain reveals an active conformation, poised to interact with other ErbB receptors. Mol Cell. 2003;11(2):495–505.

    Google Scholar 

  13. Bassiri M, Privalsky ML. Mutagenesis of the avian erythroblastosis virus erbB coding region: an intact extracellular domain is not required for oncogenic transformation. J Virol. 1986;59(2):525–30.

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Grandis JR, Tweardy DJ. Elevated levels of transforming growth factor alpha and epidermal growth factor receptor messenger RNA are early markers of carcinogenesis in head and neck cancer. Cancer Res. 1993;53(15):3579–84.

    PubMed  CAS  Google Scholar 

  15. Grandis JR, Tweardy DJ. TGF-alpha and EGFR in head and neck cancer. J Cell Biochem Suppl. 1993;17F:188–91.

    PubMed  CAS  Google Scholar 

  16. Hitt R, et al. Prognostic value of the epidermal growth factor receptor (EGRF) and p53 in advanced head and neck squamous cell carcinoma patients treated with induction chemotherapy. Eur J Cancer. 2005;41(3):453–60.

    PubMed  CAS  Google Scholar 

  17. Liccardi G, Hartley JA, Hochhauser D. EGFR nuclear translocation modulates DNA repair following cisplatin and ionizing radiation treatment. Cancer Res. 2011;71(3):1103–14.

    PubMed Central  PubMed  CAS  Google Scholar 

  18. Ang KK, et al. Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 2002;62(24):7350–6.

    PubMed  CAS  Google Scholar 

  19. Kalyankrishna S, Grandis JR. Epidermal growth factor receptor biology in head and neck cancer. J Clin Oncol. 2006;24(17):2666–72.

    PubMed  CAS  Google Scholar 

  20. Rubin Grandis J, et al. Quantitative immunohistochemical analysis of transforming growth factor-alpha and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer. 1996;78(6):1284–92.

    PubMed  CAS  Google Scholar 

  21. Shin DM, et al. Dysregulation of epidermal growth factor receptor expression in premalignant lesions during head and neck tumorigenesis. Cancer Res. 1994;54(12):3153–9.

    PubMed  CAS  Google Scholar 

  22. O’Rorke MA, et al. Human papillomavirus related head and neck cancer survival: a systematic review and meta-analysis. Oral Oncol. 2012;48(12):1191–201.

    PubMed  Google Scholar 

  23. Keller J, et al. Combination of phosphorylated and truncated EGFR correlates with higher tumor and nodal stage in head and neck cancer. Cancer Invest. 2010;28(10):1054–62.

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Maurizi M, et al. Prognostic significance of epidermal growth factor receptor in laryngeal squamous cell carcinoma. Br J Cancer. 1996;74(8):1253–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Chang AR, et al. Expression of epidermal growth factor receptor and cyclin D1 in pretreatment biopsies as a predictive factor of radiotherapy efficacy in early glottic cancer. Head Neck. 2008;30(7):852–7.

    PubMed  Google Scholar 

  26. Weiner LM, Surana R, Wang S. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Nat Rev Immunol. 2010;10(5):317–27.

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Rabinowits G, Haddad RI. Overcoming resistance to EGFR inhibitor in head and neck cancer: a review of the literature. Oral Oncol. 2012;48(11):1085–9.

    PubMed  CAS  Google Scholar 

  28. Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28–39.

    PubMed  Google Scholar 

  29. Wilson KJ, et al. Functional selectivity of EGF family peptide growth factors: implications for cancer. Pharmacol Ther. 2009;122(1):1–8.

    PubMed Central  PubMed  CAS  Google Scholar 

  30. Burgess AW, et al. An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol Cell. 2003;12(3):541–52.

    PubMed  CAS  Google Scholar 

  31. Garrett TP, et al. Crystal structure of a truncated epidermal growth factor receptor extracellular domain bound to transforming growth factor alpha. Cell. 2002;110(6):763–73.

    PubMed  CAS  Google Scholar 

  32. Schlessinger J. Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell. 2002;110(6):669–72.

    PubMed  CAS  Google Scholar 

  33. Rogers SJ, et al. Biological significance of c-erbB family oncogenes in head and neck cancer. Cancer Metastasis Rev. 2005;24(1):47–69.

    PubMed  CAS  Google Scholar 

  34. Endres NF, et al. Regulation of the catalytic activity of the EGF receptor. Curr Opin Struct Biol. 2011;21(6):777–84.

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Alvarado D, Klein DE, Lemmon MA. Structural basis for negative cooperativity in growth factor binding to an EGF receptor. Cell. 2010;142(4):568–79.

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Jura N, et al. Catalytic control in the EGF receptor and its connection to general kinase regulatory mechanisms. Mol Cell. 2011;42(1):9–22.

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Oksvold MP, et al. Serine mutations that abrogate ligand-induced ubiquitination and internalization of the EGF receptor do not affect c-Cbl association with the receptor. Oncogene. 2003;22(52):8509–18.

    PubMed  CAS  Google Scholar 

  38. Oksvold MP, et al. UV-radiation-induced internalization of the epidermal growth factor receptor requires distinct serine and tyrosine residues in the cytoplasmic carboxy-terminal domain. Radiat Res. 2004;161(6):685–91.

    PubMed  CAS  Google Scholar 

  39. Tong J, et al. Epidermal growth factor receptor phosphorylation sites Ser991 and Tyr998 are implicated in the regulation of receptor endocytosis and phosphorylations at Ser1039 and Thr1041. Mol Cell Proteomics. 2009;8(9):2131–44.

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Orth JD, et al. A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. Cancer Res. 2006;66(7):3603–10.

    PubMed  CAS  Google Scholar 

  41. Sigismund S, et al. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev Cell. 2008;15(2):209–19.

    PubMed  CAS  Google Scholar 

  42. Schroeder B, et al. A Dyn2-CIN85 complex mediates degradative traffic of the EGFR by regulation of late endosomal budding. Embo Journal. 2010;29(18):3039–53.

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Brand TM, et al. The nuclear epidermal growth factor receptor signaling network and its role in cancer. Discov Med. 2011;12(66):419–32.

    PubMed Central  PubMed  Google Scholar 

  44. Wang YN, et al. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Biochem Biophys Res Commun. 2010;399(4):498–504.

    PubMed Central  PubMed  CAS  Google Scholar 

  45. Wang YN, et al. Nuclear trafficking of the epidermal growth factor receptor family membrane proteins. Oncogene. 2010;29(28):3997–4006.

    PubMed Central  PubMed  CAS  Google Scholar 

  46. Liao HJ, Carpenter G. Role of the Sec61 translocon in EGF receptor trafficking to the nucleus and gene expression. Mol Biol Cell. 2007;18(3):1064–72.

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Wang YN, Hung MC. Nuclear functions and subcellular trafficking mechanisms of the epidermal growth factor receptor family. Cell Biosci. 2012;2:13.

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Morgan S, Grandis JR. ErbB receptors in the biology and pathology of the aerodigestive tract. Exp Cell Res. 2009;315(4):572–82.

    PubMed Central  PubMed  CAS  Google Scholar 

  49. Bei R, et al. Co-localization of multiple ErbB receptors in stratified epithelium of oral squamous cell carcinoma. J Pathol. 2001;195(3):343–8.

    PubMed  CAS  Google Scholar 

  50. Bei R, et al. Frequent overexpression of multiple ErbB receptors by head and neck squamous cell carcinoma contrasts with rare antibody immunity in patients. J Pathol. 2004;204(3):317–25.

    PubMed  CAS  Google Scholar 

  51. Ekberg T, et al. Expression of EGFR, HER2, HER3, and HER4 in metastatic squamous cell carcinomas of the oral cavity and base of tongue. Int J Oncol. 2005;26(5):1177–85.

    PubMed  CAS  Google Scholar 

  52. Chung CH, et al. Increased epidermal growth factor receptor gene copy number is associated with poor prognosis in head and neck squamous cell carcinomas. J Clin Oncol. 2006;24(25):4170–6.

    PubMed  CAS  Google Scholar 

  53. Rubin Grandis J, et al. Levels of TGF-alpha and EGFR protein in head and neck squamous cell carcinoma and patient survival. J Natl Cancer Inst. 1998;90(11):824–32.

    PubMed  CAS  Google Scholar 

  54. Rajput A, et al. A novel mechanism of resistance to epidermal growth factor receptor antagonism in vivo. Cancer Res. 2007;67(2):665–73.

    PubMed  CAS  Google Scholar 

  55. Jhappan C, et al. TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell. 1990;61(6):1137–46.

    PubMed  CAS  Google Scholar 

  56. Matsui Y, et al. Development of mammary hyperplasia and neoplasia in MMTV-TGF alpha transgenic mice. Cell. 1990;61(6):1147–55.

    PubMed  CAS  Google Scholar 

  57. Sandgren EP, et al. Overexpression of TGF alpha in transgenic mice: induction of epithelial hyperplasia, pancreatic metaplasia, and carcinoma of the breast. Cell. 1990;61(6):1121–35.

    PubMed  CAS  Google Scholar 

  58. Tinhofer I, et al. Expression of amphiregulin and EGFRvIII affect outcome of patients with squamous cell carcinoma of the head and neck receiving cetuximab-docetaxel treatment. Clin Cancer Res. 2011;17(15):5197–204.

    PubMed  CAS  Google Scholar 

  59. Yonesaka K, et al. Autocrine production of amphiregulin predicts sensitivity to both gefitinib and cetuximab in EGFR wild-type cancers. Clin Cancer Res. 2008;14(21):6963–73.

    PubMed Central  PubMed  CAS  Google Scholar 

  60. Hatakeyama H, et al. Regulation of heparin-binding EGF-like growth factor by miR-212 and acquired cetuximab-resistance in head and neck squamous cell carcinoma. Plos One. 2010;5(9):e12702.

    PubMed Central  PubMed  Google Scholar 

  61. O-Charoenrat P, Rhys-Evans P, Eccles S. Expression and regulation of c-erbB ligands in human head and neck squamous carcinoma cells. Int J Cancer. 2000;88(5):759–65.

    PubMed  CAS  Google Scholar 

  62. Murakami H, et al. Transgenic mouse model for synergistic effects of nuclear oncogenes and growth factors in tumorigenesis: interaction of c-myc and transforming growth factor alpha in hepatic oncogenesis. Cancer Res. 1993;53(8):1719–23.

    PubMed  CAS  Google Scholar 

  63. Sandgren EP, et al. Transforming growth factor alpha dramatically enhances oncogene-induced carcinogenesis in transgenic mouse pancreas and liver. Mol Cell Biol. 1993;13(1):320–30.

    PubMed Central  PubMed  CAS  Google Scholar 

  64. Sandgren EP, et al. Inhibition of Mammary-Gland involution is associated with transforming Growth-Factor-Alpha but Not C-Myc-Induced tumorigenesis in transgenic mice. Cancer Res. 1995;55(17):3915–27.

    PubMed  CAS  Google Scholar 

  65. Oshima G, et al. Autocrine epidermal growth factor receptor ligand production and cetuximab response in head and neck squamous cell carcinoma cell lines. J Cancer Res Clin Oncol. 2012;138(3):491–9.

    PubMed  CAS  Google Scholar 

  66. Psyrri A, et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res. 2005;11(16):5856–62.

    PubMed  CAS  Google Scholar 

  67. Psyrri A, et al. Correlates and determinants of nuclear epidermal growth factor receptor content in an oropharyngeal cancer tissue microarray. Cancer Epidemiology Biomarkers Prevention. 2008;17(6):1486–92.

    CAS  Google Scholar 

  68. Hama T, et al. Prognostic significance of epidermal growth factor receptor phosphorylation and mutation in head and neck squamous cell carcinoma. Oncologist. 2009;14(9):900–8.

    PubMed  CAS  Google Scholar 

  69. Schwentner I, et al. Identification of the rare EGFR mutation p.G796S as somatic and germline mutation in white patients with squamous cell carcinoma of the head and neck. Head Neck. 2008;30(8):1040–4.

    PubMed  Google Scholar 

  70. Lee JW, et al. Somatic mutations of EGFR gene in squamous cell carcinoma of the head and neck. Clin Cancer Res. 2005;11(8):2879–82.

    PubMed  CAS  Google Scholar 

  71. Stransky N, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Agrawal N, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7.

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Diedrich U, et al. Distribution of epidermal growth factor receptor gene amplification in brain tumours and correlation to prognosis. J Neurol. 1995;242(10):683–8.

    PubMed  CAS  Google Scholar 

  74. Garcia de Palazzo IE, et al. Expression of mutated epidermal growth factor receptor by non-small cell lung carcinomas. Cancer Res. 1993;53(14):3217–20.

    PubMed  CAS  Google Scholar 

  75. Ge H, Gong X, Tang CK. Evidence of high incidence of EGFRvIII expression and coexpression with EGFR in human invasive breast cancer by laser capture microdissection and immunohistochemical analysis. Int J Cancer. 2002;98(3):357–61.

    PubMed  CAS  Google Scholar 

  76. Moscatello DK, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res. 1995;55(23):5536–9.

    PubMed  CAS  Google Scholar 

  77. Nishikawa R, et al. A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A. 1994;91(16):7727–31.

    PubMed Central  PubMed  CAS  Google Scholar 

  78. Okamoto I, et al. Expression of constitutively activated EGFRvlll in non-small cell lung cancer. Cancer Sci. 2003;94(1):50–6.

    PubMed  CAS  Google Scholar 

  79. Chau NG, et al. The association between EGFR variant III, HPV, p16, c-MET, EGFR gene copy number and response to EGFR inhibitors in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. Head Neck Oncol. 2011;3:11.

    PubMed Central  PubMed  CAS  Google Scholar 

  80. Sok JC, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res. 2006;12(17):5064–73.

    PubMed  CAS  Google Scholar 

  81. Yang B, et al. Expression of epidermal growth factor receptor variant III in laryngeal carcinoma tissues. Auris Nasus Larynx. 2009;36(6):682–7.

    PubMed  Google Scholar 

  82. McIntyre JB, et al. Specific and sensitive hydrolysis probe-based real-time PCR detection of epidermal growth factor receptor variant III in oral squamous cell carcinoma. Plos One. 2012;7(2):e31723.

    PubMed Central  PubMed  CAS  Google Scholar 

  83. Matta A, Ralhan R. Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head Neck Oncol. 2009;1:6.

    PubMed Central  PubMed  Google Scholar 

  84. Chang KY, et al. Novel phosphoinositide 3-kinase/mTOR dual inhibitor, NVP-BGT226, displays potent growth-inhibitory activity against human head and neck cancer cells in vitro and in vivo. Clin Cancer Res. 2011;17(22):7116–26.

    PubMed  CAS  Google Scholar 

  85. Lai SY, Johnson FM. Defining the role of the JAK-STAT pathway in head and neck and thoracic malignancies: implications for future therapeutic approaches. Drug Resist Updates. 2010;13(3):67–78.

    CAS  Google Scholar 

  86. Wang SJ, Bourguignon LY. Hyaluronan-CD44 promotes phospholipase C-mediated Ca2 + signaling and cisplatin resistance in head and neck cancer. Arch Otolaryngol Head Neck Surg. 2006;132(1):19–24.

    PubMed  Google Scholar 

  87. Cohen EE, et al. Protein kinase C zeta mediates epidermal growth factor-induced growth of head and neck tumor cells by regulating mitogen-activated protein kinase. Cancer Res. 2006;66(12):6296–303.

    PubMed  CAS  Google Scholar 

  88. Stabile LP, He G, Lui VW, Henry C, Gubish CT, Joyce S, Quesnelle K, Siegfried JM, Grandis JR. c-Src activation mediates erlotinib resistance in head and neck cancer by stimulating c-Met. Clin Cancer Res. 2013 Jan 15;19(2):380–92.

    Google Scholar 

  89. Roskoski R Jr. ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res. 2012;66(2):105–43.

    PubMed  CAS  Google Scholar 

  90. Wortzel I, Seger R. The ERK cascade: distinct functions within various subcellular organelles. Genes Cancer. 2011;2(3):195–209.

    PubMed Central  PubMed  CAS  Google Scholar 

  91. Lurje G, Lenz HJ. EGFR signaling and drug discovery. Oncology. 2009;77(6):400–10.

    PubMed  CAS  Google Scholar 

  92. Faivre S, Kroemer G, Raymond E. Current development of mTOR inhibitors as anticancer agents. Nature Reviews Drug Discovery. 2006;5(8):671–88.

    PubMed  CAS  Google Scholar 

  93. Quesnelle KM, Boehm AL, Grandis JR. STAT-mediated EGFR signaling in cancer. Journal of Cellular Biochemistry. 2007;102(2):311–9.

    PubMed  CAS  Google Scholar 

  94. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature Reviews Cancer. 2009;9(11):798–809.

    PubMed  CAS  Google Scholar 

  95. Mehra R, et al. Protein-intrinsic and signaling network-based sources of resistance to EGFR- and ErbB family-targeted therapies in head and neck cancer. Drug Resist Updat. 2011;14(6):260–79.

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Hwang JI, et al. Molecular cloning and characterization of a novel phospholipase C, PLC-eta. Biochem J. 2005;389(Pt 1):181–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  97. Thomas SM, et al. Epidermal growth factor receptor-stimulated activation of phospholipase Cgamma-1 promotes invasion of head and neck squamous cell carcinoma. Cancer Res. 2003;63(17):5629–35.

    PubMed  CAS  Google Scholar 

  98. Kassis J, et al. A role for phospholipase C-gamma-mediated signaling in tumor cell invasion. Clin Cancer Res. 1999;5(8):2251–60.

    PubMed  CAS  Google Scholar 

  99. Nozawa H, et al. Combined inhibition of PLC gamma-1 and c-Src abrogates epidermal growth factor receptor-mediated head and neck squamous cell carcinoma invasion. Clin Cancer Res. 2008;14(13):4336–44.

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Rosse C, et al. PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol. 2010;11(2):103–12.

    PubMed  CAS  Google Scholar 

  101. Martinezgimeno C, et al. Alterations in levels of different Protein-Kinase-C isotypes and their influence on behavior of Squamous-Cell carcinoma of the oral cavity—Epsilon-Pkc, a novel prognostic factor for relapse and survival. Head Neck. 1995;17(6):516–25.

    CAS  Google Scholar 

  102. Parsons SJ, Parsons JT. Src family kinases, key regulators of signal transduction. Oncogene. 2004;23(48):7906–9.

    PubMed  CAS  Google Scholar 

  103. Koppikar P, et al. Combined inhibition of c-Src and epidermal growth factor receptor abrogates growth and invasion of head and neck squamous cell carcinoma. Clin Cancer Res. 2008;14(13):4284–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  104. Egloff AM, Grandis JR. Improving response rates to EGFR-targeted therapies for head and neck squamous cell carcinoma: candidate predictive biomarkers and combination treatment with Src inhibitors. J Oncol. 2009;2009:896407.

    PubMed Central  PubMed  Google Scholar 

  105. Wheeler DL, Iida M, Dunn EF. The role of Src in solid tumors. Oncologist. 2009;14(7):667–78.

    PubMed Central  PubMed  CAS  Google Scholar 

  106. Xi S, et al. Src kinases mediate STAT growth pathways in squamous cell carcinoma of the head and neck. J Biol Chem. 2003;278(34):31574–83.

    PubMed  CAS  Google Scholar 

  107. Zhang Q, et al. SRC family kinases mediate epidermal growth factor receptor ligand cleavage, proliferation, and invasion of head and neck cancer cells. Cancer Res. 2004;64(17):6166–73.

    PubMed  CAS  Google Scholar 

  108. Li C, et al. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene. 2009;28(43):3801–13.

    PubMed Central  PubMed  CAS  Google Scholar 

  109. Yeatman TJ. A renaissance for SRC. Nat Rev Cancer. 2004;4(6):470–80.

    PubMed  CAS  Google Scholar 

  110. Yan M, et al. Correlation of NF-kappa B signal pathway with tumor metastasis of human head and neck squamous cell carcinoma. Bmc Cancer. 2010;10:437.

    PubMed Central  PubMed  Google Scholar 

  111. Ferris RL, Grandis JR. NF-kappa B gene signatures and p53 mutations in head and neck squamous cell carcinoma—Commentary. Clin Cancer Res. 2007;13(19):5663–4.

    PubMed  CAS  Google Scholar 

  112. Nakayama H, et al. High expression levels of nuclear factor kappa B, I kappa B kinase alpha and Akt kinase in squamous cell carcinoma of the oral cavity. Cancer. 2001;92(12):3037–44.

    PubMed  CAS  Google Scholar 

  113. Yan B, et al. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-kappaB and other signal transcription factors in head and neck squamous cell carcinoma. Genome Biol. 2007;8(5):R78.

    PubMed Central  PubMed  Google Scholar 

  114. Arun P, et al. Nuclear NF-kappa B p65 phosphorylation at serine 276 by Protein kinase a contributes to the malignant phenotype of head and neck cancer. Clin Cancer Res. 2009;15(19):5974–84.

    PubMed Central  PubMed  CAS  Google Scholar 

  115. Tanaka T, et al. Selective inhibition of nuclear factor-?B by nuclear factor-?B essential modulator-binding domain peptide suppresses the metastasis of highly metastatic oral squamous cell carcinoma. Cancer Sci. 2012;103(3):455–63.

    PubMed  CAS  Google Scholar 

  116. Aravindan N, et al. Irreversible EGFR inhibitor EKB-569 Targets Low-LET gamma-Radiation-Triggered rel orchestration and potentiates cell death in squamous cell carcinoma. Plos One. 2011; 6(12):e29705.

    PubMed Central  PubMed  CAS  Google Scholar 

  117. Wilken R, et al. Curcumin: a review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Molecular Cancer. 2011;10:12.

    PubMed Central  PubMed  CAS  Google Scholar 

  118. Lee TL, et al. A signal network involving coactivated NF-kappa B and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. Int J Cancer. 2008;122(9):1987–98.

    PubMed  CAS  Google Scholar 

  119. Bivona TG, et al. FAS and NF-kappaB signalling modulate dependence of lung cancers on mutant EGFR. Nature. 2011;471(7339):523–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  120. Calais G, et al. Randomized trial of radiation therapy versus concomitant chemotherapy and radiation therapy for advanced-stage oropharynx carcinoma. J Natl Cancer Inst. 1999;91(24):2081–6.

    PubMed  CAS  Google Scholar 

  121. Adelstein DJ, et al. An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol. 2003;21(1):92–8.

    PubMed  Google Scholar 

  122. Trotti A, et al. TAME: development of a new method for summarising adverse events of cancer treatment by the Radiation Therapy Oncology Group. Lancet Oncol. 2007;8(7):613–24.

    PubMed  Google Scholar 

  123. Dittmann K, et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA-dependent protein kinase. J Biol Chem. 2005;280(35):31182–9.

    PubMed  CAS  Google Scholar 

  124. Mendelsohn J, Baselga J. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 2003;21(14):2787–99.

    PubMed  CAS  Google Scholar 

  125. Vermorken JB, et al. Open-label, uncontrolled, multicenter phase II study to evaluate the efficacy and toxicity of cetuximab as a single agent in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck who failed to respond to platinum-based therapy. J Clin Oncol. 2007;25(16):2171–7.

    PubMed  CAS  Google Scholar 

  126. Dent P, et al. Radiation-induced release of transforming growth factor alpha activates the epidermal growth factor receptor and mitogen-activated protein kinase pathway in carcinoma cells, leading to increased proliferation and protection from radiation-induced cell death. Mol Biol Cell. 1999;10(8):2493–506.

    PubMed Central  PubMed  CAS  Google Scholar 

  127. Schmidt-Ullrich RK, et al. Altered expression of epidermal growth factor receptor and estrogen receptor in MCF-7 cells after single and repeated radiation exposures. Int J Radiat Oncol Biol Phys. 1994;29(4):813–9.

    PubMed  CAS  Google Scholar 

  128. Bonner JA, et al. Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med. 2006;354(6):567–78.

    PubMed  CAS  Google Scholar 

  129. Numico G, Franco P, Cristofano A, Migliaccio F, Spinazzé S, Silvestris N, Cante D, Sciacero P, La Porta MR, Girelli F, Ricardi U. Is the combination of cetuximab with chemo-radiotherapy regimens worthwhile in the treatment of locally advanced head and neck cancer? A review of current evidence. Crit Rev Oncol Hematol. 2013 Feb;85(2):112–20.

    Google Scholar 

  130. Fakih M, Vincent M. Adverse events associated with anti-EGFR therapies for the treatment of metastatic colorectal cancer. Curr Oncol. 2010;17(Suppl 1):S18–30.

    PubMed Central  PubMed  Google Scholar 

  131. Moon C, Chae YK, Lee J. Targeting epidermal growth factor receptor in head and neck cancer: lessons learned from cetuximab. Exp Biol Med (Maywood). 2010;235(8):907–20.

    CAS  Google Scholar 

  132. Gerber PA, et al. Management of EGFR-inhibitor associated rash: a retrospective study in 49 patients. Eur J Med Res. 2012;17:4.

    PubMed Central  PubMed  CAS  Google Scholar 

  133. Sipples R. Common side effects of anti-EGFR therapy: acneform rash. Semin Oncol Nurs. 2006;22(1 Suppl 1):28–34.

    PubMed  Google Scholar 

  134. Vermorken JB, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008;359(11):1116–27.

    PubMed  CAS  Google Scholar 

  135. Masui H, et al. Growth inhibition of human tumor cells in athymic mice by anti-epidermal growth factor receptor monoclonal antibodies. Cancer Res. 1984;44(3):1002–7.

    PubMed  CAS  Google Scholar 

  136. Wheeler DL, Dunn EF, Harari PM. Understanding resistance to EGFR inhibitors-impact on future treatment strategies. Nat Rev Clin Oncol. 2010;7(9):493–507.

    PubMed Central  PubMed  CAS  Google Scholar 

  137. Mendelsohn J. Blockade of receptors for growth factors: an anticancer therapy–the fourth annual Joseph H Burchenal American Association of Cancer Research Clinical Research Award Lecture. Clin Cancer Res. 2000;6(3):747–53.

    PubMed  CAS  Google Scholar 

  138. Specenier P, Vermorken JB. Biologic therapy in head and neck cancer: a road with hurdles. ISRN Oncol. 2012;2012:163752.

    PubMed Central  PubMed  Google Scholar 

  139. Schmitz KR, Ferguson KM. Interaction of antibodies with ErbB receptor extracellular regions. Exp Cell Res. 2009;315(4):659–70.

    PubMed Central  PubMed  CAS  Google Scholar 

  140. Marshall J. Clinical implications of the mechanism of epidermal growth factor receptor inhibitors. Cancer. 2006;107(6):1207–18.

    PubMed  CAS  Google Scholar 

  141. Kurai J, et al. Antibody-dependent cellular cytotoxicity mediated by cetuximab against lung cancer cell lines. Clin Cancer Res. 2007;13(5):1552–61.

    PubMed  CAS  Google Scholar 

  142. Mehra R, Cohen RB, Burtness BA. The role of cetuximab for the treatment of squamous cell carcinoma of the head and neck. Clin Adv Hematol Oncol. 2008;6(10):742–50.

    PubMed Central  PubMed  Google Scholar 

  143. Trigo J, et al. Cetuximab monotherapy is active in patients (pts) with platinum-refractory recurrent/metastatic squamous cell carcinoma of the head and neck (SCCHN): results of a phase II study. J Clin Oncol. 2004;22:488s.

    Google Scholar 

  144. Baselga J, et al. Phase I studies of anti-epidermal growth factor receptor chimeric antibody C225 alone and in combination with cisplatin. J Clin Oncol. 2000;18(4):904–14.

    PubMed  CAS  Google Scholar 

  145. Robert F, et al. Phase I study of anti–epidermal growth factor receptor antibody cetuximab in combination with radiation therapy in patients with advanced head and neck cancer. J Clin Oncol. 2001;19(13):3234–43.

    PubMed  CAS  Google Scholar 

  146. Bonner JA, et al. Radiotherapy plus cetuximab for locoregionally advanced head and neck cancer: 5-year survival data from a phase 3 randomised trial, and relation between cetuximab-induced rash and survival. Lancet Oncol. 2010;11(1):21–8.

    PubMed  CAS  Google Scholar 

  147. Merlano M, Occelli M. Review of cetuximab in the treatment of squamous cell carcinoma of the head and neck. Ther Clin Risk Manag. 2007;3(5):871–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  148. Burtness B, et al. Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol. 2005;23(34):8646–54.

    PubMed  Google Scholar 

  149. Licitra L, Storkel S, Kerr KM, Van Cutsem E, Pirker R, Hirsch FR, Vermorken JB, von Heydebreck A, Esser R, Celik I, Ciardiello F. Predictive value of epidermal growth factor receptor expression for first-line chemotherapy plus cetuximab in patients with head and neck and colorectal cancer: analysis of data from the extreme and crystal studies. Eur J Cancer. 2013 April;49(6):1161–8.

    Google Scholar 

  150. Nielsen DL, Pfeiffer P, Jensen BV. Six cases of treatment with panitumumab in patients with severe hypersensitivity reactions to cetuximab. Ann Oncol. 2009;20(4):798.

    PubMed  CAS  Google Scholar 

  151. Wirth LJ, et al. Phase I dose-finding study of paclitaxel with panitumumab, carboplatin and intensity-modulated radiotherapy in patients with locally advanced squamous cell cancer of the head and neck. Ann Oncol. 2010;21(2):342–7.

    PubMed  CAS  Google Scholar 

  152. Machiels JP, et al. Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy: an open-label, randomised phase 3 trial. Lancet Oncol. 2011;12(4):333–43.

    PubMed  CAS  Google Scholar 

  153. Mateo C, et al. Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Immunotechnology. 1997;3(1):71–81.

    PubMed  CAS  Google Scholar 

  154. Rivera F, et al. Current situation of Panitumumab, Matuzumab, Nimotuzumab and Zalutumumab. Acta Oncol. 2008;47(1):9–19.

    PubMed  CAS  Google Scholar 

  155. Rojo F, et al. Pharmacodynamic trial of nimotuzumab in unresectable squamous cell carcinoma of the head and neck: a SENDO Foundation study. Clin Cancer Res. 2010;16(8):2474–82.

    PubMed  CAS  Google Scholar 

  156. Rodriguez MO, et al. Nimotuzumab plus radiotherapy for unresectable squamous-cell carcinoma of the head and neck. Cancer Biol Ther. 2010;9(5):343–9.

    PubMed  CAS  Google Scholar 

  157. Schmiedel J, et al. Matuzumab binding to EGFR prevents the conformational rearrangement required for dimerization. Cancer Cell. 2008;13(4):365–73.

    PubMed Central  PubMed  CAS  Google Scholar 

  158. Rao S, et al. Phase I study of epirubicin, cisplatin and capecitabine plus matuzumab in previously untreated patients with advanced oesophagogastric cancer. Br J Cancer. 2008;99(6):868–74.

    PubMed Central  PubMed  CAS  Google Scholar 

  159. Rao S, et al. Matuzumab plus epirubicin, cisplatin and capecitabine (ECX) compared with epirubicin, cisplatin and capecitabine alone as first-line treatment in patients with advanced oesophago-gastric cancer: a randomised, multicentre open-label phase II study. Ann Oncol. 2010;21(11):2213–9.

    PubMed  CAS  Google Scholar 

  160. Yonesaka K, et al. Activation of ERBB2 signaling causes resistance to the EGFR-directed therapeutic antibody cetuximab. Sci Transl Med. 2011;3(99):99ra86.

    PubMed Central  PubMed  Google Scholar 

  161. Gutierrez VF, et al. Genetic profile of second primary tumors and recurrences in head and neck squamous cell carcinomas. Head Neck. 2012;34(6):830–9.

    PubMed  Google Scholar 

  162. Lange T, et al. Trastuzumab has anti-metastatic and anti-angiogenic activity in a spontaneous metastasis xenograft model of esophageal adenocarcinoma. Cancer Lett. 2011;308(1):54–61.

    PubMed  CAS  Google Scholar 

  163. Norman G, et al. Trastuzumab for the treatment of HER2-positive metastatic adenocarcinoma of the stomach or gastro-oesophageal junction. Health Technol Assess. 2011;15(Suppl 1):33–42.

    PubMed  Google Scholar 

  164. Slamon DJ, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92.

    PubMed  CAS  Google Scholar 

  165. Bang YJ, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376(9742):687–97.

    PubMed  CAS  Google Scholar 

  166. Kondo N, et al. Antitumor effect of gefitinib on head and neck squamous cell carcinoma enhanced by trastuzumab. Oncol Rep. 2008;20(2):373–8.

    PubMed  CAS  Google Scholar 

  167. Kondo N, et al. Combined molecular targeted drug therapy for EGFR and HER-2 in head and neck squamous cell carcinoma cell lines. Int J Oncol. 2012;40(6):1805–12.

    PubMed  CAS  Google Scholar 

  168. Wilson TR, et al. Neuregulin-1-mediated autocrine signaling underlies sensitivity to HER2 kinase inhibitors in a subset of human cancers. Cancer Cell. 2011;20(2):158–72.

    PubMed  CAS  Google Scholar 

  169. Adams CW, et al. Humanization of a recombinant monoclonal antibody to produce a therapeutic HER dimerization inhibitor, pertuzumab. Cancer Immunol Immunother. 2006;55(6):717–27.

    PubMed  CAS  Google Scholar 

  170. Schoeberl B, et al. An ErbB3 antibody, MM-121, Is active in cancers with ligand-dependent activation. Cancer Res. 2010;70(6):2485–94.

    PubMed Central  PubMed  CAS  Google Scholar 

  171. Schoeberl B, et al. Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal. 2009;2(77):ra31.

    PubMed  Google Scholar 

  172. Robinson MK, et al. Targeting ErbB2 and ErbB3 with a bispecific single-chain Fv enhances targeting selectivity and induces a therapeutic effect in vitro. Br J Cancer. 2008;99(9):1415–25.

    PubMed Central  PubMed  CAS  Google Scholar 

  173. McDonagh CF, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhibits heregulin-induced activation of ErbB3. Mol Cancer Ther. 2012;11(3):582–93.

    PubMed  CAS  Google Scholar 

  174. Hollmen M, et al. Suppression of breast cancer cell growth by a monoclonal antibody targeting cleavable ErbB4 isoforms. Oncogene. 2009;28(10):1309–19.

    PubMed  CAS  Google Scholar 

  175. Vexler A, et al. Anti-ERBb4 targeted therapy combined with radiation therapy in prostate cancer. Results of in vitro and in vivo studies. Cancer Biol Ther. 2008;7(7):1090–4.

    PubMed  CAS  Google Scholar 

  176. Agulnik M. New approaches to EGFR inhibition for locally advanced or metastatic squamous cell carcinoma of the head and neck (SCCHN). Med Oncol. 2012;29(4):2481–91.

    PubMed Central  PubMed  CAS  Google Scholar 

  177. Cohen EE, et al. Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol. 2003;21(10):1980–7.

    PubMed  CAS  Google Scholar 

  178. Cohen EE, et al. Phase II trial of gefitinib 250 mg daily in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2005;11(23):8418–24.

    PubMed  CAS  Google Scholar 

  179. Caponigro F, et al. A phase I/II trial of gefitinib and radiotherapy in patients with locally advanced inoperable squamous cell carcinoma of the head and neck. Anticancer Drugs. 2008;19(7):739–44.

    PubMed  CAS  Google Scholar 

  180. Hainsworth JD, et al. Neoadjuvant chemotherapy/gefitinib followed by concurrent chemotherapy/radiation therapy/gefitinib for patients with locally advanced squamous carcinoma of the head and neck. Cancer. 2009;115(10):2138–46.

    PubMed  CAS  Google Scholar 

  181. Stewart JS, et al. Phase III study of gefitinib compared with intravenous methotrexate for recurrent squamous cell carcinoma of the head and neck [corrected]. J Clin Oncol. 2009;27(11):1864–71.

    PubMed  CAS  Google Scholar 

  182. Baselga J, et al. Phase I safety, pharmacokinetic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol. 2002;20(21):4292–302.

    PubMed  CAS  Google Scholar 

  183. Perez CA, et al. Phase II study of gefitinib adaptive dose escalation to skin toxicity in recurrent or metastatic squamous cell carcinoma of the head and neck. Oral Oncol. 2012;48(9):887–92.

    PubMed  CAS  Google Scholar 

  184. Argiris A, et al. A phase III randomized, placebo-controlled trial of docetaxel with or without gefitinib in recurrent or metastatic head and neck cancer: an Eastern Cooperative Oncology Group Trial. J Clin Oncol. 2013. (in press).

    Google Scholar 

  185. Soulieres D, et al. Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol. 2004;22(1):77–85.

    PubMed  CAS  Google Scholar 

  186. Siu LL, et al. Phase I/II trial of erlotinib and cisplatin in patients with recurrent or metastatic squamous cell carcinoma of the head and neck: a princess margaret hospital phase II consortium and National Cancer Institute of Canada clinical trials group study. J Clin Oncol. 2007;25(16):2178–83.

    PubMed  CAS  Google Scholar 

  187. Xia W, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene. 2002;21(41):6255–63.

    PubMed  CAS  Google Scholar 

  188. de Souza JA, et al. A phase II study of lapatinib in recurrent/metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2012;18(8):2336–43.

    PubMed  Google Scholar 

  189. Solca F, et al. Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther. 2012;343(2):342–50.

    PubMed  CAS  Google Scholar 

  190. Markovic A, Chung CH. Current role of EGF receptor monoclonal antibodies and tyrosine kinase inhibitors in the management of head and neck squamous cell carcinoma. Expert Rev Anticancer Ther. 2012;12(9):1149–59.

    PubMed Central  PubMed  CAS  Google Scholar 

  191. Kalous O, et al. Dacomitinib (PF-00299804), an irreversible Pan-HER inhibitor, inhibits proliferation of HER2-amplified breast cancer cell lines resistant to trastuzumab and lapatinib. Mol Cancer Ther. 2012;11(9):1978–87.

    PubMed  CAS  Google Scholar 

  192. Engelman JA, et al. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 2007;67(24):11924–32.

    PubMed  CAS  Google Scholar 

  193. Abdul Razak AR, Soulieres D, Laurie SA, Hotte SJ, Singh S, Winquist E, Chia S, Le Tourneau C, Nguyen-Tan PF, Chen EX, Chan KK, Wang T, Giri N, Mormont C, Quinn S, Siu LL. A phase II trial of dacomitinib, an oral pan-human EGF receptor (HER) inhibitor, as first-line treatment in recurrent and/or metastatic squamous-cell carcinoma of the head and neck. Ann Oncol. 2013 Mar;24(3):761–9.

    Google Scholar 

  194. Cai X, et al. Discovery of 7-(4-(3-Ethynylphenylamino)-7-methoxyquinazolin-6-yloxy)-N-hydroxyheptanamide (CUDC-101) as a Potent Multi-Acting HDAC, EGFR, and HER2 inhibitor for the treatment of cancer. J Med Chem. 2010;53(5):2000–9.

    PubMed  CAS  Google Scholar 

  195. Lai CJ, et al. CUDC-101, a multitargeted inhibitor of histone deacetylase, epidermal growth factor receptor, and human epidermal growth factor receptor 2, exerts potent anticancer activity. Cancer Res. 2010;70(9):3647–56.

    PubMed  CAS  Google Scholar 

  196. Curran D, et al. Quality of life in head and neck cancer patients after treatment with high-dose radiotherapy alone or in combination with cetuximab. J Clin Oncol. 2007;25(16):2191–7.

    PubMed  CAS  Google Scholar 

  197. Pryor DI, et al. Enhanced toxicity with concurrent cetuximab and radiotherapy in head and neck cancer. Radiother Oncol. 2009;90(2):172–6.

    PubMed  CAS  Google Scholar 

  198. Burtness B, et al. NCCN task force report: management of dermatologic and other toxicities associated with EGFR inhibition in patients with cancer. J Natl Compr Canc Netw. 2009;7(Suppl 1):S5–21; quiz S22–4.

    PubMed  Google Scholar 

  199. O’Neil BH, et al. High incidence of cetuximab-related infusion reactions in Tennessee and North Carolina and the association with atopic history. J Clin Oncol. 2007;25(24):3644–8.

    PubMed  Google Scholar 

  200. Baas JM, et al. Recommendations on management of EGFR inhibitor-induced skin toxicity: a systematic review. Cancer Treat Rev. 2012;38(5):505–14.

    PubMed  CAS  Google Scholar 

  201. Segaert S, Van Cutsem E. Clinical signs, pathophysiology and management of skin toxicity during therapy with epidermal growth factor receptor inhibitors. Ann Oncol. 2005;16(9):1425–33.

    PubMed  CAS  Google Scholar 

  202. Gerber PA, et al. Therapy with epidermal growth factor receptor inhibitors. Hautarzt. 2010;61(8):654–61.

    PubMed  CAS  Google Scholar 

  203. Wacker B, et al. Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clin Cancer Res. 2007;13(13):3913–21.

    PubMed  CAS  Google Scholar 

  204. Saltz LB, et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. 2004;22(7):1201–8.

    PubMed  CAS  Google Scholar 

  205. Wheeler DL, et al. Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members. Oncogene. 2008;27(28):3944–56.

    PubMed Central  PubMed  CAS  Google Scholar 

  206. Wheeler DL, et al. Epidermal growth factor receptor cooperates with Src family kinases in acquired resistance to cetuximab. Cancer Biol Ther. 2009;8(8):696–703.

    PubMed Central  PubMed  CAS  Google Scholar 

  207. Lu Y, et al. Epidermal growth factor receptor (EGFR) ubiquitination as a mechanism of acquired resistance escaping treatment by the Anti-EGFR monoclonal antibody cetuximab. Cancer Res. 2007;67(17):8240–7.

    PubMed  CAS  Google Scholar 

  208. Erjala K, et al. Signaling via ErbB2 and ErbB3 associates with resistance and epidermal growth factor receptor (EGFR) amplification with sensitivity to EGFR inhibitor gefitinib in head and neck squamous cell carcinoma cells. Clin Cancer Res. 2006;12(13):4103–11.

    PubMed  CAS  Google Scholar 

  209. O-charoenrat P, et al. Vascular endothelial growth factor family members are differentially regulated by c-erbB signaling in head and neck squamous carcinoma cells. Clin Exp Metastasis. 2000;18(2):155–61.

    PubMed  CAS  Google Scholar 

  210. Sen M, et al. Targeting Stat3 abrogates EGFR inhibitor resistance in cancer. Clin Cancer Res. 2012;18(18):4986–96.

    PubMed Central  PubMed  CAS  Google Scholar 

  211. Misale S, et al. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature. 2012;486(7404):532–6.

    PubMed Central  PubMed  CAS  Google Scholar 

  212. Diaz LA Jr, et al. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature. 2012;486(7404):537–40.

    PubMed Central  PubMed  Google Scholar 

  213. Johansson AC, et al. Cancer-associated fibroblasts induce matrix metalloproteinase-mediated cetuximab resistance in head and neck squamous cell carcinoma cells. Mol Cancer Res. 2012;10(9):1158–68.

    PubMed  CAS  Google Scholar 

  214. Ogawa T, et al. Methylation of death-associated protein kinase is associated with cetuximab and erlotinib resistance. Cell Cycle. 2012;11(8):1656–63.

    PubMed Central  PubMed  CAS  Google Scholar 

  215. Ahsan A, et al. Role of epidermal growth factor receptor degradation in cisplatin-induced cytotoxicity in head and neck cancer. Cancer Res. 2010;70(7):2862–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  216. Ritter CA, et al. Human breast cancer cells selected for resistance to trastuzumab in vivo overexpress epidermal growth factor receptor and ErbB ligands and remain dependent on the ErbB receptor network. Clin Cancer Res. 2007;13(16):4909–19.

    PubMed  CAS  Google Scholar 

  217. Cabebe E, Wakelee H. Role of anti-angiogenesis agents in treating NSCLC: focus on bevacizumab and VEGFR tyrosine kinase inhibitors. Curr Treat Options Oncol. 2007;8(1):15–27.

    PubMed  Google Scholar 

  218. Ellis LM, Hicklin DJ. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nature Reviews Cancer. 2008;8(8):579–91.

    PubMed  CAS  Google Scholar 

  219. Ratushny V, et al. Targeting EGFR resistance networks in head and neck cancer. Cell Signal. 2009;21(8):1255–68.

    PubMed Central  PubMed  CAS  Google Scholar 

  220. Seiwert TY, Cohen EEW. Targeting angiogenesis in head and neck cancer. Semin Oncol. 2008;35(3):274–85.

    PubMed  Google Scholar 

  221. Riedel F, et al. EGFR antisense treatment of human HNSCC cell lines down-regulates VEGF expression and endothelial cell migration. Int J Oncol. 2002;21(1):11–6.

    PubMed  CAS  Google Scholar 

  222. Cohen EE, et al. Erlotinib and bevacizumab in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck: a phase I/II study. Lancet Oncol. 2009;10(3):247–57.

    PubMed Central  PubMed  CAS  Google Scholar 

  223. Fury MG, et al. A phase II study of SU5416 in patients with advanced or recurrent head and neck cancers. Invest New Drugs. 2007;25(2):165–72.

    PubMed  CAS  Google Scholar 

  224. Elser C, et al. Phase II trial of sorafenib in patients with recurrent or metastatic squamous cell carcinoma of the head and neck or nasopharyngeal carcinoma. J Clin Oncol. 2007;25(24):3766–73.

    PubMed  CAS  Google Scholar 

  225. Argiris A, Kotsakis AP, Hoang T, Worden FP, Savvides P, Gibson MK, Gyanchandani R, Blumenschein GR Jr., Chen HX, Grandis JR, Harari PM, Kies MS, Kim S. Cetuximab and bevacizumab: preclinical data and phase ii trial in recurrent or metastatic squamous cell carcinoma of the head and neck. Ann Oncol. 2013 Jan;24(1):220–5.

    Google Scholar 

  226. Hurwitz SJ, et al. Pharmacodynamics of DT-IgG, a dual-targeting antibody against VEGF-EGFR, in tumor xenografted mice. Cancer Chemother Pharmacol. 2012;69(3):577–90.

    PubMed  CAS  Google Scholar 

  227. Zhang H, et al. A dual-targeting antibody against EGFR-VEGF for lung and head and neck cancer treatment. Int J Cancer. 2012;131(4):956–69.

    PubMed  CAS  Google Scholar 

  228. Karnoub AE, Weinberg RA. Ras oncogenes: split personalities. Nat Rev Mol Cell Biol. 2008;9(7):517–31.

    PubMed Central  PubMed  CAS  Google Scholar 

  229. Suda T, et al. Copy number amplification of the PIK3CA gene is associated with poor prognosis in non-lymph node metastatic head and neck squamous cell carcinoma. Bmc Cancer. 2012;12(1):416.

    PubMed Central  PubMed  CAS  Google Scholar 

  230. Smilek P, et al. Epidermal growth factor receptor (EGFR) expression and mutations in the EGFR signaling pathway in correlation with anti-EGFR therapy in head and neck squamous cell carcinomas. Neoplasma. 2012;59(5):508–15.

    PubMed  CAS  Google Scholar 

  231. McAllister SS, Weinberg RA. Tumor-host interactions: a far-reaching relationship. J Clin Oncol. 2010;28(26):4022–8.

    PubMed  Google Scholar 

  232. Baylin SB, et al. Aberrant patterns of DNA methylation, chromatin formation and gene expression in cancer. Hum Mol Genet. 2001;10(7):687–92.

    PubMed  CAS  Google Scholar 

  233. Chang X, et al. Identification of hypermethylated genes associated with cisplatin resistance in human cancers. Cancer Res. 2010;70(7):2870–9.

    PubMed Central  PubMed  CAS  Google Scholar 

  234. Gifford G, et al. The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients. Clin Cancer Res. 2004;10(13):4420–6.

    PubMed  CAS  Google Scholar 

  235. Segura-Pacheco B, et al. Global DNA hypermethylation-associated cancer chemotherapy resistance and its reversion with the demethylating agent hydralazine. J Transl Med. 2006;4:32.

    PubMed Central  PubMed  Google Scholar 

  236. Bedi A, et al. Inhibition of TGF-beta enhances the in vivo antitumor efficacy of EGF receptor-targeted therapy. Mol Cancer Ther. 2012;11(11):2429–39.

    PubMed Central  PubMed  CAS  Google Scholar 

  237. Hoellein A, et al. Aurora kinase inhibition overcomes cetuximab resistance in squamous cell cancer of the head and neck. Oncotarget. 2011;2(8):599–609.

    PubMed Central  PubMed  Google Scholar 

  238. Astsaturov I, et al. Synthetic lethal screen of an EGFR-centered network to improve targeted therapies. Sci Signal. 2010;3(140):ra67.

    PubMed Central  PubMed  Google Scholar 

  239. Chuang HY, Hofree M, Ideker T. A decade of systems biology. Annu Rev Cell Dev Biol. 2010;26:721–44.

    PubMed Central  PubMed  CAS  Google Scholar 

  240. Kohl P, et al. Systems biology: an approach. Clin Pharmacol Ther. 2010;88(1):25–33.

    PubMed  CAS  Google Scholar 

  241. Fertig EJ, et al. CoGAPS: an R/C + + package to identify patterns and biological process activity in transcriptomic data. Bioinformatics. 2010;26(21):2792–3.

    PubMed Central  PubMed  CAS  Google Scholar 

  242. Team RDC. An introduction to R: notes on R, a programming environment for data analysis and graphics. Ockerbloom JM, editor. 2008.

    Google Scholar 

  243. Fertig EJ, et al. Gene expression signatures modulated by epidermal growth factor receptor activation and their relationship to cetuximab resistance in head and neck squamous cell carcinoma. Bmc Genomics. 2012;13:160.

    PubMed Central  PubMed  CAS  Google Scholar 

  244. Cordero P, Ashley EA. Whole-genome sequencing in personalized therapeutics. Clin Pharmacol Ther. 2012;91(6):1001–9.

    PubMed  CAS  Google Scholar 

  245. Dunham I, et al. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.

    PubMed  CAS  Google Scholar 

  246. Forbes SA, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39(Database issue):D945–50.

    PubMed Central  PubMed  CAS  Google Scholar 

  247. Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    PubMed  Google Scholar 

  248. Liu H, Beck TN, Golemis EA, Serebriiskii IG. Integrating in silico resources to map a signaling network. In: Ochs M, editor. Methods. New York: Springer; 2013.

    Google Scholar 

  249. Ogiso H, et al. Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell. 2002;110(6):775–87.

    PubMed  CAS  Google Scholar 

  250. Stamos J, Sliwkowski MX, Eigenbrot C. Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem. 2002;277(48):46265–72.

    PubMed  CAS  Google Scholar 

  251. Zhang X, et al. An allosteric mechanism for activation of the kinase domain of epidermal growth factor receptor. Cell. 2006;125(6):1137–49.

    PubMed  CAS  Google Scholar 

  252. Bocharov EV, et al. Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem. 2008;283(11):6950–6.

    PubMed  CAS  Google Scholar 

  253. Hynes NE, Lane HA. ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer. 2005;5(5):341–54.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors were supported by U54 CA149147, R01 CA63366, and P50 CA083638 from the NIH (to EAG), postdoctoral fellowship from SASS Foundation for Medical Research and Ann Schreiber Program of Excellence Grant from the Ovarian Cancer Research Fund (to HL), Drexel University College of Medicine MD-PhD Program (to TNB), and NIH core grant CA06927 (to Fox Chase Cancer Center).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica A. Golemis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Liu, H., Cracchiolo, J., Beck, T., Serebriiskii, I., Golemis, E. (2014). EGFR Inhibitors as Therapeutic Agents in Head and Neck Cancer. In: Burtness, B., Golemis, E. (eds) Molecular Determinants of Head and Neck Cancer. Current Cancer Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8815-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8815-6_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8814-9

  • Online ISBN: 978-1-4614-8815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics