Skip to main content
Top

31-07-2017 | Leukemia | Article

Considerations in T Cell Therapy Product Development for B Cell Leukemia and Lymphoma Immunotherapy

Journal: Current Hematologic Malignancy Reports

Authors: Andrew D. Fesnak, Patrick J. Hanley, Bruce L. Levine

Publisher: Springer US

Abstract

Based on laboratory and clinical research findings and investments in immunotherapy by many institutions in academia, government-funded laboratories, and industry, there is tremendous and deserved excitement in the field of cell and gene therapy. In particular, understanding of immune-mediated control of cancer has created opportunities to develop new forms of therapies based on engineered T cells. Unlike conventional drugs or biologics, the source material for these new therapies is collected from the patient or donor. The next step is commonly either enrichment to deplete unwanted cells, or methods to positively select T cells prior to polyclonal expansion or antigen-specific expansion. As the first generation of engineered T cell therapies have demonstrated proof of concept, the next stages of development will require the integration of automated technologies to enable more consistent manufacturing and the ability to produce therapies for more patients.
Literature
1.
Greenberg P, Goodrich J, Riddell S. Adoptive immunotherapy of human cytomegalovirus infection: potential role in protection from disease progression. Transplant Proc. 1991;23(3 Suppl 3):97–101.PubMed
2.
Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science. 1992;257(5067):238–41.CrossRefPubMed
3.
Riddell SR, Greenberg PD, Overell RW, Loughran TP, Gilbert MJ, Lupton SD, et al. Phase I study of cellular adoptive immunotherapy using genetically modified CD8+ HIV-specific T cells for HIV seropositive patients undergoing allogeneic bone marrow transplant. The Fred Hutchinson Cancer Research Center and the University of Washington School of Medicine, Department of Medicine, Division of Oncology. Hum Gene Ther. 1992;3(3):319–38. doi:10.​1089/​hum.​1992.​3.​3-319.CrossRefPubMed
4.
Rooney CM, Smith CA, Ng CY, Loftin S, Li C, Krance RA, et al. Use of gene-modified virus-specific T lymphocytes to control Epstein-Barr-virus-related lymphoproliferation. Lancet. 1995;345(8941):9–13.CrossRefPubMed
5.
Hanley PJ, Bollard CM, Brunstein CG. Adoptive immunotherapy with the use of regulatory T cells and virus-specific T cells derived from cord blood. Cytotherapy. 2015;17(6):749–55. doi:10.​1016/​j.​jcyt.​2014.​12.​007.CrossRefPubMedPubMedCentral
6.
Hanley PJ, Cruz CR, Savoldo B, Leen AM, Stanojevic M, Khalil M, et al. Functionally active virus-specific T cells that target CMV, adenovirus, and EBV can be expanded from naive T-cell populations in cord blood and will target a range of viral epitopes. Blood. 2009;114(9):1958–67. doi:10.​1182/​blood-2009-03-213256.CrossRefPubMedPubMedCentral
7.
Hanley PJ, Lam S, Shpall EJ, Bollard CM. Expanding cytotoxic T lymphocytes from umbilical cord blood that target cytomegalovirus, Epstein-Barr virus, and adenovirus. J Vis Exp. 2012;63:e3627. doi:10.​3791/​3627.
8.
Hanley PJ, Melenhorst JJ, Nikiforow S, Scheinberg P, Blaney JW, Demmler-Harrison G, et al. CMV-specific T cells generated from naive T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med. 2015;7(285):285ra63. doi:10.​1126/​scitranslmed.​aaa2546.CrossRefPubMedPubMedCentral
9.
Chapuis AG, Ragnarsson GB, Nguyen HN, Chaney CN, Pufnock JS, Schmitt TM, et al. Transferred WT1-reactive CD8+ T cells can mediate antileukemic activity and persist in post-transplant patients. Sci Transl Med. 2013;5(174):174ra27. doi:10.​1126/​scitranslmed.​3004916.CrossRefPubMedPubMedCentral
10.
Weber G, Gerdemann U, Caruana I, Savoldo B, Hensel NF, Rabin KR, et al. Generation of multi-leukemia antigen-specific T cells to enhance the graft-versus-leukemia effect after allogeneic stem cell transplant. Leukemia. 2013;27(7):1538–47. doi:10.​1038/​leu.​2013.​66.CrossRefPubMed
11.
Williams KM, Grant M, Ismail M, Hoq F, Martin-Manso M, Hoover J, et al. Complete remissions post infusion of multiple tumor antigen specific T cells for the treatment of high risk leukemia and lymphoma patients after HCT. Cytotherapy. 2017;19(5, Supplement):e3. doi:10.​1016/​j.​jcyt.​2017.​03.​013.CrossRef
12.
Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86(24):10024–8.CrossRefPubMedPubMedCentral
13.
Kuwana Y, Asakura Y, Utsunomiya N, Nakanishi M, Arata Y, Itoh S, et al. Expression of chimeric receptor composed of immunoglobulin-derived V regions and T-cell receptor-derived C regions. Biochem Biophys Res Commun. 1987;149(3):960–8.CrossRefPubMed
14.
Hege KM, Bergsland EK, Fisher GA, Nemunaitis JJ, Warren RS, McArthur JG, et al. Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer. J Immunother Cancer. 2017;5:22. doi:10.​1186/​s40425-017-0222-9.CrossRefPubMedPubMedCentral
15.
Mitsuyasu RT, Anton PA, Deeks SG, Scadden DT, Connick E, Downs MT, et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood. 2000;96(3):785–93.PubMed
16.
Walker RE, Bechtel CM, Natarajan V, Baseler M, Hege KM, Metcalf JA, et al. Long-term in vivo survival of receptor-modified syngeneic T cells in patients with human immunodeficiency virus infection. Blood. 2000;96(2):467–74.PubMed
17.
Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73. doi:10.​1126/​scitranslmed.​3002842.CrossRefPubMedPubMedCentral
18.
Kochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20. doi:10.​1182/​blood-2011-10-384388.CrossRefPubMedPubMedCentral
19.
Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33. doi:10.​1056/​NEJMoa1103849.CrossRefPubMedPubMedCentral
20.
Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev. 2017;4:92–101. doi:10.​1016/​j.​omtm.​2016.​12.​006.CrossRefPubMed
21.
Pillay J, Tak T, Kamp VM, Koenderman L. Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences. Cell Mol Life Sci. 2013;70(20):3813–27. doi:10.​1007/​s00018-013-1286-4.CrossRefPubMedPubMedCentral
22.
Stroncek DF, Lee DW, Ren J, Sabatino M, Highfill S, Khuu H, et al. Elutriated lymphocytes for manufacturing chimeric antigen receptor T cells. J Transl Med. 2017;15(1):59. doi:10.​1186/​s12967-017-1160-5.CrossRefPubMedPubMedCentral
23.
Hexner EO, Luger SM, Reshef R, Jeschke GR, Mangan JK, Frey NV, et al. Infusion of CD3/CD28 costimulated umbilical cord blood T cells at the time of single umbilical cord blood transplantation may enhance engraftment. Am J Hematol. 2016;91(5):453–60. doi:10.​1002/​ajh.​24303.CrossRefPubMed
24.
Borrello I, Noonan KA. Marrow-infiltrating lymphocytes—role in biology and cancer therapy. Front Immunol. 2016;7:112. doi:10.​3389/​fimmu.​2016.​00112.CrossRefPubMedPubMedCentral
25.
•• Singh N, Perazzelli J, Grupp SA, Barrett DM. Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Sci Transl Med. 2016;8(320):320ra3. doi:10.​1126/​scitranslmed.​aad5222. Demonstrates treatment-related expansion defects of benign T cells in patients with acute lymphoblastic leukemia, suggesting that T cell manufacturing from these patients may be limited by prior treatment CrossRefPubMed
26.
Barth MJ, Chu Y, Hanley PJ, Cairo MS. Immunotherapeutic approaches for the treatment of childhood, adolescent and young adult non-Hodgkin lymphoma. Br J Haematol. 2016;173(4):597–616. doi:10.​1111/​bjh.​14078.CrossRefPubMed
27.
Bollard CM, Gottschalk S, Torrano V, Diouf O, Ku S, Hazrat Y, et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(8):798–808. doi:10.​1200/​JCO.​2013.​51.​5304.CrossRef
28.
Heslop HE, Slobod KS, Pule MA, Hale GA, Rousseau A, Smith CA, et al. Long-term outcome of EBV-specific T-cell infusions to prevent or treat EBV-related lymphoproliferative disease in transplant recipients. Blood. 2010;115(5):925–35. doi:10.​1182/​blood-2009-08-239186.CrossRefPubMedPubMedCentral
29.
Janssen WE, Ribickas A, Meyer LV, Smilee RC. Large-scale Ficoll gradient separations using a commercially available, effectively closed, system. Cytotherapy. 2010;12(3):418–24. doi:10.​3109/​1465324090347966​3.CrossRefPubMed
30.
Kaur I, Zulovich JM, Gonzalez M, McGee KM, Ponweera N, Thandi D, et al. Comparison of two methodologies for the enrichment of mononuclear cells from thawed cord blood products: the automated Sepax system versus the manual Ficoll method. Cytotherapy. 2017;19(3):433–9. doi:10.​1016/​j.​jcyt.​2016.​11.​010.CrossRefPubMed
31.
Powell DJ Jr, Brennan AL, Zheng Z, Huynh H, Cotte J, Levine BL. Efficient clinical-scale enrichment of lymphocytes for use in adoptive immunotherapy using a modified counterflow centrifugal elutriation program. Cytotherapy. 2009;11(7):923–35. doi:10.​3109/​1465324090318892​1.CrossRefPubMed
32.
Stroncek DF, Fellowes V, Pham C, Khuu H, Fowler DH, Wood LV, et al. Counter-flow elutriation of clinical peripheral blood mononuclear cell concentrates for the production of dendritic and T cell therapies. J Transl Med. 2014;12:241. doi:10.​1186/​s12967-014-0241-y.CrossRefPubMedPubMedCentral
33.
Pollack SM, Jones RL, Farrar EA, Lai IP, Lee SM, Cao J, et al. Tetramer guided, cell sorter assisted production of clinical grade autologous NY-ESO-1 specific CD8(+) T cells. J Immunother Cancer. 2014;2(1):36. doi:10.​1186/​s40425-014-0036-y.CrossRefPubMedPubMedCentral
34.
•• Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, et al. Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med. 2015;7(315):315ra189. doi:10.​1126/​scitranslmed.​aad4134. Demonstrates the feasibility of using FACS cell sorting to isolate therapeutic cell subsets (Tregs in this case) for clinical use CrossRefPubMedPubMedCentral
35.
• Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest. 2016;126(6):2123–38. doi:10.​1172/​JCI85309. Demonstrates a novel approach toward standardizing starting cellular material for therapeutic cell manufacturing and the associated improvement of clinical outcomes CrossRefPubMedPubMedCentral
36.
• Fraietta JA, Lacey SF, Wilcox NS, Bedoya F, Chen F, Orlando E, Brogdon JL, Hwang WT, Frey N, Young RM, Pequignot E, Ambrose DE, Levine BL, Bitter H, Porter DL, Xu J, June CH, Melenhorst JJ. Biomarkers of response to anti-CD19 chimeric antigen receptor (CAR) T-cell therapy in patients with chronic lymphocytic leukemia. Blood. 2016;128(22). Demonstrates the ability to predict response to CD19 specific CAR T cells using biomarker signatures.
37.
Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A. 2016;113(48):E7788–E97. doi:10.​1073/​pnas.​1610544113.CrossRefPubMedPubMedCentral
38.
•• Vera JF, Brenner LJ, Gerdemann U, Ngo MC, Sili U, Liu H, et al. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J Immunother. 2010;33(3):305–15. doi:10.​1097/​CJI.​0b013e3181c0c3cb​. This publication demonstrates the capability of the Grex device in augmenting cell expansion. It compares the manufacturing process of EBV-specific T cells expanded in 24-well plates and the Grex and evaluates criteria such as production hours, number of flasks, and final yield CrossRefPubMedPubMedCentral
39.
Bunos M, Hummer C, Wingenfeld E, Sorg N, Pfirrmann V, Bader P, et al. Automated isolation of primary antigen-specific T cells from donor lymphocyte concentrates: results of a feasibility exercise. Vox Sang. 2015;109(4):387–93. doi:10.​1111/​vox.​12291.CrossRefPubMed
40.
Kumaresan P, Figliola M, Moyes JS, Huls MH, Tewari P, Shpall EJ, et al. Automated cell enrichment of cytomegalovirus-specific T cells for clinical applications using the cytokine-capture system. J Vis Exp. 2015;104 doi:10.​3791/​52808.
41.
Bollard CM. Improving T-cell therapy for Epstein-Barr virus lymphoproliferative disorders. J Clin Oncol Off J Am Soc Clin Oncol. 2013;31(1):5–7. doi:10.​1200/​JCO.​2012.​43.​5784.CrossRef
42.
Mock U, Nickolay L, Philip B, Cheung GW, Zhan H, Johnston IC, et al. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS prodigy. Cytotherapy. 2016;18(8):1002–11. doi:10.​1016/​j.​jcyt.​2016.​05.​009.CrossRefPubMed
43.
Berger C, Jensen MC, Lansdorp PM, Gough M, Elliott C, Riddell SR. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118(1):294–305. doi:10.​1172/​jci32103.CrossRefPubMed
44.
Wang X, Popplewell LL, Wagner JR, Naranjo A, Blanchard MS, Mott MR, et al. Phase I studies of central-memory-derived CD19 CAR T cell therapy following autologous HSCT in patients with B-cell NHL. Blood. 2016; doi:10.​1182/​blood-2015-12-686725.
45.
Xu Y, Zhang M, Ramos CA, Durett A, Liu E, Dakhova O, et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123(24):3750–9. doi:10.​1182/​blood-2014-01-552174.CrossRefPubMedPubMedCentral
46.
Perna SK, De Angelis B, Pagliara D, Hasan ST, Zhang L, Mahendravada A, et al. Interleukin 15 provides relief to CTLs from regulatory T cell-mediated inhibition: implications for adoptive T cell-based therapies for lymphoma. Clin Cancer Res. 2013;19(1):106–17. doi:10.​1158/​1078-0432.​ccr-12-2143.CrossRefPubMed
47.
Perna SK, Pagliara D, Mahendravada A, Liu H, Brenner MK, Savoldo B, et al. Interleukin-7 mediates selective expansion of tumor-redirected cytotoxic T lymphocytes (CTLs) without enhancement of regulatory T-cell inhibition. Clin Cancer Res. 2014;20(1):131–9. doi:10.​1158/​1078-0432.​ccr-13-1016.CrossRefPubMed
48.
Crompton JG, Sukumar M, Roychoudhuri R, Clever D, Gros A, Eil RL, et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 2015;75(2):296–305. doi:10.​1158/​0008-5472.​CAN-14-2277.CrossRefPubMed
49.
van der Waart AB, van de Weem NM, Maas F, Kramer CS, Kester MG, Falkenburg JH, et al. Inhibition of Akt signaling promotes the generation of superior tumor-reactive T cells for adoptive immunotherapy. Blood. 2014;124(23):3490–500. doi:10.​1182/​blood-2014-05-578583.CrossRefPubMedPubMedCentral
50.
Bonyhadi M, Frohlich M, Rasmussen A, Ferrand C, Grosmaire L, Robinet E, et al. In vitro engagement of CD3 and CD28 corrects T cell defects in chronic lymphocytic leukemia. J Immunol. 2005;174(4):2366–75.CrossRefPubMed
51.
Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W, et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest. 2008;118(7):2427–37. doi:10.​1172/​jci35017.PubMedPubMedCentral
52.
Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z, Barrett DM, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 2016;127(9):1117–27. doi:10.​1182/​blood-2015-11-679134.CrossRefPubMedPubMedCentral
53.
Ruella M, Kenderian SS, Shestova O, Fraietta JA, Qayyum S, Zhang Q, et al. The addition of the BTK inhibitor ibrutinib to anti-CD19 chimeric antigen receptor T cells (CART19) improves responses against mantle cell lymphoma. Clin Cancer Res. 2016;22(11):2684–96. doi:10.​1158/​1078-0432.​ccr-15-1527.CrossRefPubMed
54.
Paulos CM, Carpenito C, Plesa G, Suhoski MM, Varela-Rohena A, Golovina TN, et al. The inducible costimulator (ICOS) is critical for the development of human T(H)17 cells. Sci Transl Med. 2010;2(55):55ra78. doi:10.​1126/​scitranslmed.​3000448.CrossRefPubMed
55.
Suhoski MM, Golovina TN, Aqui NA, Tai VC, Varela-Rohena A, Milone MC, et al. Engineering artificial antigen-presenting cells to express a diverse array of co-stimulatory molecules. Mol Ther. 2007;15(5):981–8. doi:10.​1038/​mt.​sj.​6300134.CrossRefPubMedPubMedCentral
56.
Lu TL, Pugach O, Somerville R, Rosenberg SA, Kochendefer JN, Better M, et al. A rapid cell expansion process for production of engineered autologous CAR-T cell therapies. Human gene therapy methods. 2016;27(6):209–18. doi:10.​1089/​hgtb.​2016.​120.CrossRefPubMed
57.
Frey NV, Shaw PA, Hexner EO, Gill S, Marcucci K, Luger SM, Mangan JK, Grupp SA, Maude SL, Ericson S. Optimizing chimeric antigen receptor (CAR) T cell therapy for adult patients with relapsed or refractory (r/r) acute lymphoblastic leukemia (ALL). American Society of Clinical Oncology; 2016.
58.
Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest. 2008;118(9):3132–42. doi:10.​1172/​JCI35700.CrossRefPubMedPubMedCentral
59.
Frecha C, Levy C, Cosset FL, Verhoeyen E. Advances in the field of lentivector-based transduction of T and B lymphocytes for gene therapy. Mol Ther. 2010;18(10):1748–57. doi:10.​1038/​mt.​2010.​178.CrossRefPubMedPubMedCentral
60.
Verhoeyen E, Dardalhon V, Ducrey-Rundquist O, Trono D, Taylor N, Cosset FL. IL-7 surface-engineered lentiviral vectors promote survival and efficient gene transfer in resting primary T lymphocytes. Blood. 2003;101(6):2167–74. doi:10.​1182/​blood-2002-07-2224.CrossRefPubMed
61.
Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, et al. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther. 2006;13(1):151–9. doi:10.​1016/​j.​ymthe.​2005.​07.​688.CrossRefPubMed
62.
Deniger DC, Yu J, Huls MH, Figliola MJ, Mi T, Maiti SN, et al. Sleeping beauty transposition of chimeric antigen receptors targeting receptor tyrosine kinase-like orphan receptor-1 (ROR1) into diverse memory T-cell populations. PLoS One. 2015;10(6):e0128151. doi:10.​1371/​journal.​pone.​0128151.CrossRefPubMedPubMedCentral
63.
Berdien B, Mock U, Atanackovic D, Fehse B. TALEN-mediated editing of endogenous T-cell receptors facilitates efficient reprogramming of T lymphocytes by lentiviral gene transfer. Gene Ther. 2014;21(6):539–48. doi:10.​1038/​gt.​2014.​26.CrossRefPubMed
64.
Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. 2008;26(7):808–16. doi:10.​1038/​nbt1410.CrossRefPubMedPubMedCentral
65.
Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370(10):901–10. doi:10.​1056/​NEJMoa1300662.CrossRefPubMedPubMedCentral
66.
Poirot L, Philip B, Schiffer-Mannioui C, Le Clerre D, Chion-Sotinel I, Derniame S, et al. Multiplex genome-edited T-cell manufacturing platform for “off-the-shelf” adoptive T-cell immunotherapies. Cancer Res. 2015;75(18):3853–64. doi:10.​1158/​0008-5472.​CAN-14-3321.CrossRefPubMed
67.
Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex Cripsr/Cas9 genome editing to generate potent universal CART and PD1-deficient cells against leukemia. Blood. 2015;126(23):4280.
68.
Somerville RP, Devillier L, Parkhurst MR, Rosenberg SA, Dudley ME. Clinical scale rapid expansion of lymphocytes for adoptive cell transfer therapy in the WAVE(R) bioreactor. J Transl Med. 2012;10:69. doi:10.​1186/​1479-5876-10-69.CrossRefPubMedPubMedCentral