Skip to main content
Top

05-07-2016 | Hematologic cancers | Book chapter | Article

1. PET/CT for HL Staging

Authors: Martin Hutchings, Annika Loft, Tarec Christoffer El-Galaly

Publisher: Springer International Publishing

Abstract

Accurate baseline staging of Hodgkin lymphoma (HL) is crucial for prognostication and guides important treatment decisions. This remains true in the era of highly effective combined modality treatments and intensive multi-agent chemotherapy regimens that lead to cure in the vast majority of HL patients irrespective of disease stage [1, 2]. In the early 1970s the Committee on Hodgkin’s Disease Staging Classification convened in Ann Arbor, Michigan, and this resulted in the first staging classification for HL which was named after the city [3]. The Ann Arbor staging classification became the widely accepted classification for disease staging in HL and enabled comparison of studies by different investigators. The main clinical purpose of the Ann Arbor Classification was to accurately identify patients with limited-stage HL who could be treated with a curative intent with radiotherapy alone. Accurate staging was pursued through rigorous procedures, which included both a clinical and a pathological staging workup. Clinical stage was determined from physical examination, symptom assessment, lymphangiograms, and radiograms, some of which are still elements in modern HL staging. Pathological stage was derived from the results of invasive staging procedures including diagnostic laparotomy and iliac crest bone marrow biopsy (BMB). The risk of serious complications and discomfort related to invasive procedures were tolerated at that time as no good alternatives for evaluation of deep lymph node regions and organs were available. The introduction of computed tomography (CT) enabled noninvasive assessment of deep lymph node regions/organs and changed the staging of HL fundamentally. The committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease met in the Cotswolds (UK) and the report generated by the committee recommended CT of the thorax and abdomen in the routine staging workup of HL. Invasive staging procedures with the exception of iliac crest bone marrow biopsy were no longer considered necessary (Cotswold modifications of the Ann Arbor Classification) [4].
Literature
1.
Engert A, Diehl V, Franklin J, Lohri A, Dorken B, Ludwig WD, et al. Escalated-dose BEACOPP in the treatment of patients with advanced-stage Hodgkin’s lymphoma: 10 years of follow-up of the GHSG HD9 study. J Clin Oncol. 2009;27(27):4548–54.CrossRefPubMed
2.
Engert A, Plutschow A, Eich HT, Lohri A, Dorken B, Borchmann P, et al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):640–52.CrossRefPubMed
3.
Carbone PP, Kaplan HS, Musshoff K, Smithers DW, Tubiana M. Report of the Committee on Hodgkin’s Disease Staging Classification. Cancer Res. 1971;31(11):1860–1.PubMed
4.
Lister TA, Crowther D, Sutcliffe SB, Glatstein E, Canellos GP, Young RC, et al. Report of a committee convened to discuss the evaluation and staging of patients with Hodgkin’s disease: Cotswolds meeting. J Clin Oncol. 1989;7(11):1630–6.PubMed
5.
Weiler-Sagie M, Bushelev O, Epelbaum R, Dann EJ, Haim N, Avivi I, et al. (18)F-FDG avidity in lymphoma readdressed: a study of 766 patients. J Nucl Med. 2010;51(1):25–30.CrossRefPubMed
6.
Bangerter M, Moog F, Buchmann I, Kotzerke J, Griesshammer M, Hafner M, et al. Whole-body 2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) for accurate staging of Hodgkin’s disease. Ann Oncol. 1998;9(10):1117–22.CrossRefPubMed
7.
Partridge S, Timothy A, O’Doherty MJ, Hain SF, Rankin S, Mikhaeel G. 2-Fluorine-18-fluoro-2-deoxy-D glucose positron emission tomography in the pretreatment staging of Hodgkin’s disease: influence on patient management in a single institution. Ann Oncol. 2000;11(10):1273–9.CrossRefPubMed
8.
Jerusalem G, Beguin Y, Fassotte MF, Najjar F, Paulus P, Rigo P, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose compared to standard procedures for staging patients with Hodgkin’s disease. Haematologica. 2001;86(3):266–73.PubMed
9.
Weihrauch MR, Re D, Bischoff S, Dietlein M, Scheidhauer K, Krug B, et al. Whole-body positron emission tomography using 18F-fluorodeoxyglucose for initial staging of patients with Hodgkin’s disease. Ann Hematol. 2002;81(1):20–5.CrossRefPubMed
10.
Cerci JJ, Trindade E, Buccheri V, Fanti S, Coutinho AMN, Zanoni L, et al. Consistency of FDG-PET accuracy and cost-effectiveness in initial staging of patients with Hodgkin lymphoma across jurisdictions. Clin Lymphoma Myeloma Leuk. 2011;11(4):314–20.CrossRefPubMed
11.
Hutchings M, Loft A, Hansen M, Pedersen LM, Berthelsen AK, Keiding S, et al. Position emission tomography with or without computed tomography in the primary staging of Hodgkin’s lymphoma. Haematologica. 2006;91(4):482–9.PubMed
12.
Hutchings M, Loft A, Hansen M, Ralfkiaer E, Specht L. Different histopathological subtypes of Hodgkin lymphoma show significantly different levels of FDG uptake. Hematol Oncol. 2006;24(3):146–50.CrossRefPubMed
13.
Bednaruk-Młyński E, Pieńkowska J, Skórzak A, Małkowski B, Kulikowski W, Subocz E, et al. Comparison of positron emission tomography/computed tomography with classical contrast-enhanced computed tomography in the initial staging of Hodgkin lymphoma. Leuk Lymphoma. 2014;56(2):377–82.CrossRefPubMed
14.
El Galaly TC, Hutchings M, Mylam KJ, Brown Pde N, Bukh A, Johnsen HE, et al. Impact of 18F-fluorodeoxyglucose positron emission tomography/computed tomography staging in newly diagnosed classical Hodgkin lymphoma: fewer cases with stage I disease and more with skeletal involvement. Leuk Lymphoma. 2014;55(10):2349–55.CrossRefPubMed
15.
Grellier J, Vercellino L, Leblanc T, Merlet P, Thieblemont C, Weinmann P, et al. Performance of FDG PET/CT at initial diagnosis in a rare lymphoma: nodular lymphocyte-predominant Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2014;41(11):2023–30.CrossRefPubMed
16.
Aleman BM, van den Belt-Dusebout AW, Klokman WJ, Van’t Veer MB, Bartelink H, van Leeuwen FE. Long-term cause-specific mortality of patients treated for Hodgkin’s disease. J Clin Oncol. 2003;21(18):3431–9.CrossRefPubMed
17.
Hutchings M. How does PET/CT help in selecting therapy for patients with Hodgkin lymphoma? ASH Educ Program Book. 2012;2012(1):322–7.
18.
Girinsky T, van der Maazen R, Specht L, Aleman B, Poortmans P, Lievens Y, et al. Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. Radiother Oncol. 2006;79(3):270–7.CrossRefPubMed
19.
Barrington SF, Mikhaeel NG, Kostakoglu L, Meignan M, Hutchings M, Mueller SP, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the International Conference on Malignant Lymphomas Imaging Working Group. J Clin Oncol. 2014;32(27):3048–58.CrossRefPubMed
20.
Chiaravalloti A, Danieli R, Caracciolo CR, Travascio L, Cantonetti M, Gallamini A, et al. Initial staging of Hodgkin’s disease: role of contrast-enhanced 18F FDG PET/CT. Medicine. 2014;93(8), e50.CrossRefPubMedPubMedCentral
21.
Schaefer NG, Hany TF, Taverna C, Seifert B, Stumpe KDM, von Schulthess GK, et al. Non-Hodgkin lymphoma and Hodgkin disease: coregistered FDG PET and CT at staging and restaging – do we need contrast-enhanced CT? Radiology. 2004;232(3):823–9.CrossRefPubMed
22.
Chalaye J, Luciani A, Enache C, Beaussart P, Lhermite C, Evangelista E, et al. Clinical impact of contrast-enhanced computed tomography combined with low-dose 18F-fluorodeoxyglucose positron emission tomography/computed tomography on routine lymphoma patient management. Leuk Lymphoma. 2014;55(12):2887–92.CrossRefPubMed
23.
Vriens D, Visser E, de Geus-Oei L-F, Oyen W. Methodological considerations in quantification of oncological FDG PET studies. Eur J Nucl Med Mol Imaging. 2010;37(7):1408–25.CrossRefPubMed
24.
Berthelsen AK, Holm S, Loft A, Klausen TL, Andersen F, Højgaard L. PET/CT with intravenous contrast can be used for PET attenuation correction in cancer patients. Eur J Nucl Med Mol Imaging. 2005;32(10):1167–75.CrossRefPubMed
25.
El Galaly TC, d’Amore F, Mylam KJ, Nully Brown P, Bøgsted M, Bukh A, et al. Routine bone marrow biopsy has little or no therapeutic consequence for positron emission tomography/computed tomography-staged treatment-naive patients with Hodgkin lymphoma. J Clin Oncol. 2012;30(36):4508–14.CrossRefPubMed
26.
Weiler-Sagie M, Kagna O, Dann E, Ben Barak A, Israel O. Characterizing bone marrow involvement in Hodgkin’s lymphoma by FDG-PET/CT. Eur J Nucl Med Mol Imaging. 2014;41(6):1133–40.CrossRefPubMed
27.
Purz S, Mauz-Körholz C, Körholz D, Hasenclever D, Krausse A, Sorge I, et al. [18F]fluorodeoxyglucose positron emission tomography for detection of bone marrow involvement in children and adolescents with Hodgkin’s lymphoma. J Clin Oncol. 2011;29(26):3523–8.CrossRefPubMed
28.
Chen-Liang TH, Martin-Santos T, Jerez A, Senent L, Orero MT, Remigia MJ, et al. The role of bone marrow biopsy and FDG-PET/CT in identifying bone marrow infiltration in the initial diagnosis of high grade non-Hodgkin B-cell lymphoma and Hodgkin lymphoma. accuracy in a multicenter series of 372 patients. Am J Hematol. 2015;90(8):686–90.CrossRefPubMed
29.
Howell SJ, Grey M, Chang J, Morgenstern GR, Cowan RA, Deakin DP, et al. The value of bone marrow examination in the staging of Hodgkin’s lymphoma: a review of 955 cases seen in a regional cancer centre. Br J Haematol. 2002;119(2):408–11.CrossRefPubMed
30.
Levis A, Pietrasanta D, Godio L, Vitolo U, Ciravegna G, Di Vito F, et al. A large-scale study of bone marrow involvement in patients with Hodgkin’s lymphoma. Clin Lymphoma. 2004;5(1):50–5.CrossRefPubMed
31.
BRUNNING RD, BLOOMFIELD CD, McKENNA RW, PETERSON L. Bilateral trephine bone marrow biopsies in lymphoma and other neoplastic diseases. Ann Intern Med. 1975;82(3):365–6.CrossRefPubMed
32.
Adams H, Kwee T, Fijnheer R, Dubois S, Nievelstein R, de Klerk J. Bone marrow FDG-PET/CT in Hodgkin lymphoma revisited: do imaging and pathology match? Ann Nucl Med. 2015;29(2):132–7.CrossRefPubMed
33.
Adams HJA, Kwee TC, de Keizer B, Fijnheer R, de Klerk JMH, Littooij AS, et al. Systematic review and meta-analysis on the diagnostic performance of FDG-PET/CT in detecting bone marrow involvement in newly diagnosed Hodgkin lymphoma: is bone marrow biopsy still necessary? Ann Oncol. 2014;25(5):921–7.CrossRefPubMed
34.
Adams HJA, Kwee TC, Fijnheer R, Dubois SV, Nievelstein RAJ, de Klerk JMH. Diffusely increased bone marrow FDG uptake in recently untreated lymphoma: incidence and relevance. Eur J Haematol. 2015;95(1):83–9.CrossRefPubMed
35.
Chiang SB, Rebenstock A, Guan L, Alavi A, Zhuang H. Diffuse bone marrow involvement of Hodgkin lymphoma mimics hematopoietic cytokine-mediated FDG uptake on FDG PET imaging. Clin Nucl Med. 2003;28(8):674–6.PubMed
36.
Zwarthoud C, Ouvier M, Borra A, Bergesio F, Chauvie S, Biggi A, et al. Patterns of PET/CT-assessed bone-marrow involvement in newly diagnosed Hodgkin lymphoma; a detailed review of 150 ABVD treated patients. Leuk Lymphoma. 2015;56:1233. Ref Type: Abstract.CrossRef
37.
Cheson BD, Fisher RI, Barrington SF, Cavalli F, Schwartz LH, Zucca E, et al. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and Non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol. 2014;32(27):3059–68.CrossRefPubMed
38.
Buck AK, Halter G, Schirrmeister H, Kotzerke J, Wurziger I, Glatting G, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med. 2003;44(9):1426–31.PubMed
39.
Sandherr M, von Schilling C, Link T, Stock K, von Bubnoff N, Peschel C, et al. Pitfalls in imaging Hodgkin’s disease with computed tomography and positron emission tomography using fluorine-18-fluorodeoxyglucose. Ann Oncol. 2001;12(5):719–22.CrossRefPubMed
40.
Martiat P, Ferrant A, Labar D, Cogneau M, Bol A, Michel C, et al. In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J Nucl Med. 1988;29(10):1633–7.PubMed
41.
Shields AF, Mankoff DA, Link JM, Graham MM, Eary JF, Kozawa SM, et al. Carbon-11-thymidine and FDG to measure therapy response. J Nucl Med. 1998;39(10):1757–62.PubMed
42.
Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med. 1998;4(11):1334–6.CrossRefPubMed
43.
Buchmann I, Neumaier B, Schreckenberger M, Reske S. [18F]3′-deoxy-3′-fluorothymidine-PET in NHL patients: whole-body biodistribution and imaging of lymphoma manifestations--a pilot study. Cancer Biother Radiopharm. 2004;19(4):436–42.PubMed
44.
Buck AK, Bommer M, Stilgenbauer S, Juweid M, Glatting G, Schirrmeister H, et al. Molecular imaging of proliferation in malignant lymphoma. Cancer Res. 2006;66(22):11055–61.CrossRefPubMed
45.
Kasper B, Egerer G, Gronkowski M, Haufe S, Lehnert T, Eisenhut M, et al. Functional diagnosis of residual lymphomas after radiochemotherapy with positron emission tomography comparing FDG- and FLT-PET. Leuk Lymphoma. 2007;48(4):746–53.CrossRefPubMed
46.
Buck AK, Kratochwil C, Glatting G, Juweid M, Bommer M, Tepsic D, et al. Early assessment of therapy response in malignant lymphoma with the thymidine analogue [18F]FLT. Eur J Nucl Med Mol Imaging. 2007;34(11):1775–82.CrossRefPubMed
47.
Herrmann K, Buck AK, Schuster T, Rudelius M, Wester HJ, Graf N, et al. A pilot study to evaluate 3′-deoxy-3′-18F-fluorothymidine PET for initial and early response imaging in mantle cell lymphoma. J Nucl Med. 2011;52(12):1898–902.CrossRefPubMed
48.
Herrmann K, Buck AK, Schuster T, Junger A, Wieder H, Graf N, et al. Predictive value of initial 18F-FLT uptake in patients with aggressive non-Hodgkin lymphoma receiving R-CHOP treatment. J Nucl Med. 2011;52(5):690–6.CrossRefPubMed
49.
Graf N, Herrmann K, den Hollander J, Fend F, Schuster T, Wester HJ, et al. Imaging proliferation to monitor early response of lymphoma to cytotoxic treatment. Mol Imaging Biol. 2008;10(6):349–55.CrossRefPubMed
50.
Hoffman RM. Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochim Biophys Acta. 1984;738(1-2):49–87.PubMed
51.
Stern PH, Wallace CD, Hoffman RM. Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol. 1984;119(1):29–34.CrossRefPubMed
52.
Wheatley DN. On the problem of linear incorporation of amino acids into cell protein. Experientia. 1982;38(7):818–20.CrossRefPubMed
53.
Leskinen-Kallio S, Ruotsalainen U, Nagren K, Teras M, Joensuu H. Uptake of carbon-11-methionine and fluorodeoxyglucose in non-Hodgkin’s lymphoma: a PET study. J Nucl Med. 1991;32(6):1211–8.PubMed
54.
Nuutinen J, Leskinen S, Lindholm P, Soderstrom KO, Nagren K, Huhtala S, et al. Use of carbon-11 methionine positron emission tomography to assess malignancy grade and predict survival in patients with lymphomas. Eur J Nucl Med. 1998;25(7):729–35.CrossRefPubMed
55.
Eichenauer DA, Engert A, André M, Federico M, Illidge T, Hutchings M, et al. Hodgkin’s lymphoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25 suppl 3:iii70–5.CrossRefPubMed
56.
A predictive model for aggressive non-Hodgkin’s lymphoma. The International Non-Hodgkin’s Lymphoma Prognostic Factors Project. N Engl J Med. 1993;329(14):987–94.
57.
Solal-Celigny P, Roy P, Colombat P, White J, Armitage JO, Arranz-Saez R, et al. Follicular lymphoma international prognostic index. Blood. 2004;104(5):1258–65.CrossRefPubMed
58.
Hoster E, Dreyling M, Klapper W, Gisselbrecht C, van Hoof A, Kluin-Nelemans HC, et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008;111(2):558–65.CrossRefPubMed