Skip to main content
Top

29-08-2017 | Head and neck cancers | Article

Biomarker driven treatment of head and neck squamous cell cancer

Journal: Cancers of the Head & Neck

Authors: Nnamdi Eze, Ying-Chun Lo, Barbara Burtness

Publisher: BioMed Central

Abstract

Abstract

Treatment modalities of head and neck squamous cell cancer include surgery, radiation, chemotherapy, targeted agents and immune checkpoint inhibition. Treatment is often toxic and can affect long-term function and quality of life. In this context, identification of biomarker data that can help tailor therapy on an individualized basis and reduce treatment-related toxicity would be highly beneficial. A variety of predictive biomarkers have been discovered and are already utilized in clinical practice, while many more are being explored. We will review p16 overexpression as a surrogate biomarker in HPV-associated head and neck cancer and plasma EBV DNA as a biomarker in nasopharyngeal carcinoma, the two established biomarkers currently utilized in clinical practice. We will also examine novel predictive biomarkers that are in clinical development and may shape the future landscape of targeted head and neck cancer therapy. These emerging biomarkers include the tyrosine kinases and their signaling pathway, immune checkpoint biomarkers, tumor suppressor abnormalities, and molecular predictors of hypoxia-targeted therapy. We will also look at futuristic biomarkers including detection of circulating DNA from clinical specimens and rapid tumor profiling. We will highlight the ongoing effort that will see a shift from prognostic to predictive biomarker development in head and neck cancer with the goal of delivering individualized cancer therapy.

Trial registration

N/A.
Literature
1.
Siegel RL, et al. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.CrossRefPubMed
2.
Trotti A. Toxicity in head and neck cancer: a review of trends and issues. Int. J. Rad Oncol Biol Phys. 2000;47(1):1–12.CrossRef
3.
Garden A, Harris J, Trotti A, et al. Long-term results of concomitant boost radiation plus concurrent cisplatin for advanced head and neck carcinomas: a phase II trial of the radiation therapy oncology group (RTOG 99-14). Int J Rad Oncol Biol Phys. 2008;71(5):1351–5.CrossRef
4.
Forastiere A, et al. Long-term results of RTOG 91-11: a comparison of three nonsurgical treatment strategies to preserve the larynx in patients with locally advanced larynx cancer. J Clin Oncol. 2013;31:845–52.CrossRefPubMed
5.
National Cancer Institute. NCI dictionary of cancer terms. 2005. https://​www.​cancer.​gov/​publications/​dictionaries/​cancer-terms.
6.
Ang KK, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.CrossRefPubMedPubMedCentral
7.
Ragin CC, Taioli E. Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int J Cancer. 2007;121:1813–20.CrossRefPubMed
8.
Fakhry C, et al. Improved survival of patients with HPV- positive HNSCC in a prospective trial. J Natl Cancer Inst. 2008;100:261–9.CrossRefPubMed
9.
Gillison ML, et al. Tobacco smoking and increased risk of death and progression for patients with p16-positive and p16-negative oropharyngeal cancer. J Clin Oncol. 2012;30(17):2102–11.CrossRefPubMedPubMedCentral
10.
Vokes EE, et al. HPV-associated head and neck cancer. J Natl Cancer Inst. 2015;107:djv344.CrossRefPubMed
11.
Vermorken JB, et al. Cisplatin and fluorouracil with or without panitumumab in patients with recurrent or metastatic squamous cell carcinoma of the head and neck (SPECTRUM): an open –label phase 3 randomized trial. Lancet Oncol. 2013;14:697–710.CrossRefPubMed
12.
Vermoken JB, et al. Impact of tumor HPV status on outcome in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck receiving chemotherapy with or without cetuximab: retrospective analysis of the phase III EXTREME trial. Ann Oncol. 2014;25:801–7.CrossRef
13.
Rosenthal D, et al. Association of human papillomavirus and p16 status with outcomes in the IMCL-9815 phase III registration trial for patients with locoregionally advanced oropharyngeal squamous cell carcinoma of the head and neck treated with radiotherapy with or without cetuximab. J Clin Oncol. 2016;34(12):1300–8.CrossRefPubMed
14.
Marur S, et al. E1308: phase II trial of induction chemotherapy followed by reduced-dose radiation and weekly Cetuximab in patients with HPV-associated resectable squamous cell carcinoma of the oropharynx- ECOG-ACRIN cancer research group. J Clin Oncol. 2016;35(5):490–7. doi:10.​1200/​JCO.​2016.​68.​3300.CrossRef
15.
Argiris A, et al. Prognostic significance of human papillomavirus in recurrent or metastatic head and neck cancer: an analysis of eastern cooperative oncology group trials. Ann Oncol. 2014;25(7):1410–6. doi:10.​1093/​annonc/​mdu167. Epub 2014 May 5CrossRefPubMedPubMedCentral
16.
Chung CH, et al. p16 expression and human papillomavirus status as prognostic biomarkers of non-oropharyngeal head and neck squamous cell carcinoma. J Clin Oncol. 2014;32:3930.CrossRefPubMedPubMedCentral
17.
Bratman SV, et al. Human papillomavirus genotypes association with survival in head and neck Squamous cell carcinoma. JAMA Oncol. 2016;2(6):823–6. doi:10.​1001/​jamaoncol.​2015.​6587.CrossRefPubMed
18.
Psyrri A, et al. Human papillomavirus genotypes conferring poor prognosis in head and neck squamous cell carcinoma. JAMA Oncol. 2017;3(1):125. doi:10.​1001/​jamaoncol.​2016.​3409.CrossRefPubMed
19.
Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomark Prev. 2006;15:1765.CrossRef
20.
Barnes L, et al. Pathology and genetics of head and neck tumors. In: World Health Organization classification of tumors. Lyon: IARC Press; 2005.
21.
Chua M, et al. Nasopharyngeal carcinoma. Lancet. 2016;387:1012.CrossRefPubMed
22.
Hsu WL, et al. Independent effect of EBV and cigarette smoking on nasopharyngeal carcinoma: a 20-year follow-up study on 9,622 males without family history in Taiwan. Cancer Epidemiol Biomark Prev. 2009;18:1218.CrossRef
23.
Xu FH, et al. An epidemiological and molecular study of the relationship between smoking, risk of nasopharyngeal carcinoma and Epstein-Barr virus activation. J Natl Cancer Inst. 2012;104:1396.CrossRefPubMed
24.
Vaughan TL, et al. Nasopharyngeal cancer in low-risk population: defining risk factors by histological type. Cancer Epidemiol Biomark Prev. 1996;5:587.
25.
Raghupathy R et al. Epstein-Barr virus as a paradigm in nasopharyngeal cancer: from lab to clinic. Am Soc Clin Oncol Educ Book. 2014;149-53. doi:10.​14694/​EdBook_​AM.​2014.​34.​149.
26.
Raab-Traub N. Novel mechanisms of EBV-induced oncogenesis. Curr Opin Virol. 2012;2:453–8.CrossRefPubMedPubMedCentral
27.
Lo YM, et al. Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res. 1999;59:1188.PubMed
28.
Lo YM, et al. Molecular prognostication of nasopharyngeal carcinoma by quantitative analysis of circulating Epstein-Barr virus DNA. Cancer Res. 2000;60:6878–81.PubMed
29.
Lin JC, et al. Quantification of plasma Epstein-Barr virus DNA in patients with advanced nasopharyngeal carcinoma. N Engl J Med. 2004;350:2461–70.CrossRefPubMed
30.
Chan, A.T et al. Phase II study of neoadjuvant carboplatin and paclitaxel followed by radiotherapy and concurrent cisplatin in patients with locoregionally advanced nasopharyngeal carcinoma: therapeutic monitoring with plasma Epstein-Barr virus DNA. J Clin Oncol. 2004;22(15):3053–60.
31.
Lee et al, ASCO Annual meeting. Serial early post-IMRT undetectable plasma EBV DNA to predict outcomes in non-metastatic nasopharyngeal cancer. J Clin Oncol. 33, 2015 (suppl; abstr 6007).
32.
Lee N, NRG-HN001: Randomized Phase II and Phase III Studies of Individualized Treatment for Nasopharyngeal Carcinoma Based on Biomarker Epstein Barr Virus (EBV) Deoxyribonucleic Acid (DNA). https://​www.​rtog.​org/​ClinicalTrials/​ProtocolTable/​StudyDetails.​aspx?​study=​1305.
33.
Jorissen RN, et al. Epidermal growth factor receptor: mechanisms of activation and signaling. Exp Cell Res. 2003;284:31–53.CrossRefPubMed
34.
Seiwert TY et al. Genomic profiling of a clinically annotated cohort of locoregionally advanced head and neck cancers treated with definitive chemoradiotherapy. J Clin Oncol. 2012; 30 (suppl: abstr 5517).
35.
Engelman JA. Targeting PI3K signaling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9:550–62.CrossRefPubMed
36.
Psyrri A, et al. Prognostic biomarkers in phase II trial of cetuxiamb containing induction and chemoradiation in respectable HNSCC: eastern cooperative oncology group E2303. Clin Ca Res. 2014;20(11):3023–32.CrossRef
37.
Stansky N, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.CrossRef
38.
Network CGA. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature. 2015;517(7536):576–82.CrossRef
39.
Soulieres D et al. ASCO Annual Meeting. BERIL-1: A phase II, placebo-controlled study of buparlisib (BKM120) plus paclitaxel in patients with platinum-pretreated recurrent/metastatic HNSCC. J Clin Oncol. 34, 2016: (suppl; abstr 6008).
40.
Squarize CH, et al. PTEN deficiency contributes to the development and progression of head and neck cancer. Neoplasia. 2013;15(5):461–71.CrossRefPubMedPubMedCentral
41.
Lee JI, et al. Loss of PTEN expression as a prognostic marker for tongue cancer. Arch Otolaryngol Head Neck Surg. 2001;127(12):1441–5. doi:10.​1001/​archotol.​127.​12.​1441.CrossRefPubMed
42.
Shao X, et al. Mutational analysis of the PTEN gene in head and neck squamous cell carcinoma. Int J Cancer. 1998;77(5):684–8.CrossRefPubMed
43.
Chiosea SI, et al. PIK3CA, HRAS and PTEN in human papillomavirus positive oropharyngeal squamous cell carcinoma. BMC Cancer. 2013;13:602. doi:10.​1186/​1471-2407-13-602.CrossRefPubMedPubMedCentral
44.
Chung CH, et al. Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann Oncol. 2015;26(6):1216–23. doi:10.​1093/​annonc/​mdv109.CrossRefPubMedPubMedCentral
45.
Chun SH, et al. Divergence of P53, PTEN, AKT and mTOR expression in tonsillar cancer. Head Neck. 2014;37(5):636–43. doi:10.​1002/​hed.​23643.CrossRefPubMed
46.
Holsinger PC, et al. Biomarker- directed therapy of squamous carcinomas of the head and neck: targeting PI3K/PTEN/mTOR pathway. J Clin Oncol. 2013;31(9):e137–40.CrossRefPubMed
47.
Burtness B, et al. A phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an eastern cooperative oncology group study. J Clin Oncol. 2005;23(34):8646–54.CrossRefPubMed
48.
Cohen E, et al. Tumor biomarker association with clinical outcomes in recurrent and/or metastatic head and neck squamous cell carcinoma patients treated with afatinib versus methotrexate: LUX-Head & Neck 1. Int J Rad Oncol. 2016;94(4):868–9.CrossRef
49.
Machiels JH, et al. Afatinib versus methotrexate as second-line treatment in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck progressing on or after platinum-based therapy (LUX-Head & Neck 1): an open-label, randomized phase 3 trial. Lancet Oncol. 2015;16(5):583–94.CrossRefPubMed
50.
Ang KK, et al. Impact of epidermal growth factor receptor expression and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 2002;62:7350–6.PubMed
51.
Turner N, Grose R. Fibroblast growth factor signaling: from development to cancer. Nat Rev Cancer. 2010;10:116–29.CrossRefPubMed
52.
Sweeny L, et al. Inhibition of fibroblasts reduced head and neck cancer growth by targeting fibroblast growth factor receptor. Laryngoscope. 2012;122(7):1539–44. doi:10.​1002/​lary.​23266.CrossRefPubMedPubMedCentral
53.
NCT01004224: A dose escalation study in adult patients with advanced solid malignancies. US National Library of Medicine. ClinicalTrials.gov [online]. https://​clinicaltrials.​gov/​ct2/​show/​NCT01703481?​term=​NCT01703481&​rank=​1.
54.
Tabernero J, et al. Phase 1 Dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2015;33(30)3401-8. doi:10.​1200/​JCO.​2014.​60.​7341.
55.
Ewen M, Lamb J. The activities of cyclin D1 that drives tumorigenesis. Trends Mol Med. 2004;10:158–62.CrossRefPubMed
56.
Choi YJ, Anders L. Signaling through cyclin D-dependent kinases. Oncogene. 2014;33:1890–903.CrossRefPubMed
57.
Memorial Sloan Kettering Cancer Center. cBioPortal for Cancer Genomics [online]. 2014; http://​www.​cbioportal.​org/​.
58.
Hayes DN, et al. The cancer genome atlas: integrated analysis of genome alterations in squamous cell carcinoma of the head and neck. J Clin Oncol. 2013;31:609. doi:10.​1200/​jco.​2013.​31.​15_​suppl.​6009.
59.
Kalish LH, et al. Degulated cyclin d1 expression is associated with decreased efficacy of the selective EGFR TKI gefetinib in HNSCC cell lines. Clin Cancer Res. 2004;10:7764–74.CrossRefPubMed
60.
Beck TN, et al. EGFR and RB1 as dual biomarkers in HPV-negative head and neck cancer. Mol Cancer Ther. 2016;15(10):2486-97. doi:10.​1158/​1535-7163.​MCT-16-0243.
61.
Beck TN, et al. Phospho-T356RB1 predicts survival in HPV-negative squamous cell carcinoma of the head and neck. Oncotarget. 2015;6:18863–74.CrossRefPubMedPubMedCentral
62.
Akervall J, et al. Cyclin D1 overexpression versus response to induction chemotherapy in squamous cell carcinoma of the head and neck- preliminary report. Acta Oncol. 2011;40:505–11.CrossRef
63.
Seiwert T, et al. The MET receptor tyrosine kinase is a potential novel therapeutic agent for head and neck squamous cell carcinoma. Cancer Res. 2009;69:3021–31.CrossRefPubMedPubMedCentral
64.
Chow L. et al. 2016 ASCO Annual meeting. Biomarkers and response to pembrolizumab in recurrent/metastatic head and neck squamous cell carcinoma. J Clin Oncol. 34, 2016 (suppl; abstr 6010).
65.
Seiwert TY, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. The Lancet Oncol. 2016;17(7):956–65.CrossRefPubMed
66.
Ribas A, et al. Association of response to programmed death receptor 1 (PD-1) blockade with pembrolizumab (MK-3475) with an interferon-inflammatory immune gene signature. J Clin Oncol. 2015;33(15):3001. doi:10.​1200/​jco.​2015.​33.​15_​suppl.​3001.
67.
Vousden KH, Lane DP. P53 in health and disease. Nat Rev Mol Cell Biol. 2007;8:275–83.CrossRefPubMed
68.
Poeta ML, et al. TP53 mutations and survival in squamous cell carcinoma of the head and neck. N Engl J Med. 2007;357:2552–61.CrossRefPubMedPubMedCentral
69.
Haupt Y, et al. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9.CrossRefPubMed
70.
Gillison ML, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst. 2000;92(9):709–20.CrossRefPubMed
71.
Scheffner M, et al. The HPV-16 E6 and E6-AP complex functions as an ubiquitin-protein ligase in the ubiquitination of p53. Cell. 1993;73(3):495–505.CrossRef
72.
Moser R, et al. Functional kinomics identifies candidate therapeutic targets in HNSCC. Clin Cancer Res. 2014;20:4274–88.CrossRefPubMedPubMedCentral
73.
Sathyan KM, et al. H-Ras mutation modulates the expression of major cell cycle regulatory proteins and disease prognosis in oral carcinoma. Mod Pathol. 2007;20:1141.CrossRefPubMed
74.
Agrawal N, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333(6046):1154–7. doi:10.​1126/​science.​1206923.CrossRefPubMedPubMedCentral
75.
Sun W, et al. Activation of the NOTCH pathway in head and neck cancer. Cancer Res. 2014;74:1091–104.CrossRefPubMed
76.
Nordsmark M, et al. Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. Radiother Oncol. 2005;77:18–24.CrossRefPubMed
77.
Semenza GL. HIF-1 and human disease: one highly involved factor. Genes Dev. 2000;14:1983–91.PubMed
78.
Rischin D, et al. Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. J Clin Oncol. 2001;19(2):535–42.CrossRefPubMed
79.
Rischin D, et al. Tirapazamine, cisplatin, and radiation versus fluorouracil, cisplatin, and radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the trans-Tasman radiation oncology group (TROG 98.02). J Clin Oncol. 2005;23(1):79–87.CrossRefPubMed
80.
Overgaard J, et al. Misonidazole combined with split-course radiotherapy in the treatment of invasive carcinoma of larynx and pharynx: report from the DAHANCA 2 study. Int J Radiation Oncol Bio Phys. 1989;16(4):1065–8.CrossRef
81.
Overgaard J, et al. A randomized double blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish head and neck cancer study (DAHANCA) protocol 5-85. Radiother Oncol. 1998;46(2):135–46.CrossRefPubMed
82.
Le Q-T, et al. Prognostic and predictive significance of plasma HGF and IL8 in a phase III trial of chemoradiation with or without tirapazamine in locoregionally advanced head and neck cancer. Clin Cancer Res. 2012;18(6):1798–807.CrossRefPubMedPubMedCentral
83.
Meyerson M, et al. Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet. 2010;11:685–96.CrossRefPubMed
84.
Bettogowda C, et al. Detection of circulating tumor DNA in early-and late-stage human malignancies. Sci Transl Med. 2014;6:224ra24.CrossRef
85.
Braig F, et al. Liquid biopsy monitoring uncovers acquired RAS-mediated resistance to cetuximab in a substantial proportion of patients with head and neck squamous cell carcinoma. Oncotarget. 2016;7(28):42988–95. doi:10.​18632/​oncotarget.​8943.CrossRefPubMedPubMedCentral
86.
Kent OA, Mendell JT. A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene. 2006;25:6188–96.CrossRefPubMed
87.
Zhang M, et al. Identification of microRNAs as diagnostic biomarkers in screening of head and neck cancer: a meta-analysis. Genet Mol Res. 2015;14(4):16562–76. doi:10.​4238/​2015.​December.​11.​3.CrossRefPubMed
88.
Weinberger PM, et al. Human papillomavirus-active head and neck cancer and ethnic health disparities. Laryngoscope. 2010;120:1531–7. doi:10.​1002/​lary.​20984.CrossRefPubMedPubMedCentral
89.
Jiron J, et al. Racial disparities in human papillomavirus (HPV) associated head and neck cancer. Am J Otolaryngol. 2014;35:147–53. doi:10.​1016/​j.​amjoto.​2013.​09.​004.CrossRefPubMed
90.
Liu JC, et al. High prevalence of discordant HPV and p16 Oropharynx squamous cell carcinomas in an African American cohort. Head Neck. 2016;38(Suppl 1):E867–72. doi:10.​1002/​hed.​24117.CrossRefPubMed