Skip to main content
Top

12-08-2017 | Head and neck cancers | Review | Article

Tumor DNA: an emerging biomarker in head and neck cancer

Journal: Cancer and Metastasis Reviews

Authors: Joseph A. Bellairs, Rifat Hasina, Nishant Agrawal

Publisher: Springer US

Abstract

Head and neck cancer (HNC) includes a diverse range of malignancies arising commonly from mucosal epithelia of the upper aerodigestive tract. Head and neck squamous cell carcinoma (HNSCC), the most common form of HNC, develops in the oral cavity, pharynx, and larynx and is associated with tobacco exposure, alcohol abuse, and infection with oncogenic viruses. Despite global advances in cancer care, HNSCC often presents with advanced disease and is associated with poor 5-year survival of ~50%. Genotyping tumor tissue to guide clinical decision-making is becoming commonplace in modern oncology, but in the management of HNSCC, tissue biopsies with cytopathology or histopathology remain the mainstay for diagnosis. Furthermore, conventional biopsies are temporally and spatially limited, often providing a brief snapshot of a single region of a heterogeneous tumor. In the absence of a useful biomarker, both primary and recurrent HNSCCs are diagnosed with conventional imaging and clinical examination. As a result, many patients are diagnosed with advanced disease. Tumor DNA is an emerging biomarker in HNSCC. DNA fragments are constantly being shed from tumors and metastatic lesions, and can therefore be detected in blood and other bodily fluids. Utilizing next-generation sequencing techniques, these tumor DNA can be characterized and quantified. This can serve as a minimally invasive liquid biopsy allowing for specific tumor profiling, dynamic tumor burden monitoring, and active surveillance for disease recurrences. In HNSCC, analysis of tumor DNA has the potential to enhance tumor profiling, aid in determining patient prognosis, and guide treatment decisions.
Literature
1.
(2015). The global burden of cancer 2013. JAMA Oncology, 1, 505–527. doi:10.​1001/​jamaoncol.​2015.​0735.
2.
Siegel, R. L., Miller, K. D., & Jemal, A. (2016). Cancer statistics, 2016. CA Cancer J Clin, 66, 7–30. doi:10.​3322/​caac.​21332.CrossRefPubMed
3.
Marur, S., & Forastiere, A. A. (2008). Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clinic Proceedings, 83, 489–501. doi:10.​4065/​83.​4.​489.CrossRefPubMed
4.
Leemans, C. R., Braakhuis, B. J. M., & Brakenhoff, R. H. (2011). The molecular biology of head and neck cancer. Nature Reviews. Cancer, 11, 9–22. doi:10.​1038/​nrc2982.CrossRefPubMed
5.
Agrawal, N., Frederick, M. J., Pickering, C. R., et al. (2011). Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science, 333, 1154–1157. doi:10.​1126/​science.​1206923.CrossRefPubMedPubMedCentral
6.
Vogelstein, B., Papadopoulos, N., Velculescu, V. E., et al. (2013). Cancer genome landscapes. Science, 339, 1546–1558. doi:10.​1126/​science.​1235122.CrossRefPubMedPubMedCentral
7.
Stransky, N., Egloff, A. M., Tward, A. D., et al. (2011). The mutational landscape of head and neck squamous cell carcinoma. Science, 333, 1157–1160. doi:10.​1126/​science.​1208130.CrossRefPubMedPubMedCentral
8.
(2015). Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature, 517, 576–582. doi:10.​1038/​nature14129.
9.
Burtness, B., Bauman, J. E., & Galloway, T. (2013). Novel targets in HPV-negative head and neck cancer: overcoming resistance to EGFR inhibition. The Lancet Oncology, 14, e302–e309. doi:10.​1016/​S1470-2045(13)70085-8.CrossRefPubMed
10.
Cohen, E. E. W., Kane, M. A., List, M. A., et al. (2005). Phase II trial of gefitinib 250 mg daily in patients with recurrent and/or metastatic squamous cell carcinoma of the head and neck. Clinical Cancer Research, 11, 8418–8424. doi:10.​1158/​1078-0432.​CCR-05-1247.CrossRefPubMed
11.
Soulieres, D., Senzer, N. N., Vokes, E. E., et al. (2004). Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. Journal of Clinical Oncology, 22, 77–85. doi:10.​1200/​JCO.​2004.​06.​075.CrossRefPubMed
12.
Marur, S., & Forastiere, A. A. (2016). Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clinic Proceedings, 91, 386–396. doi:10.​1016/​j.​mayocp.​2015.​12.​017.CrossRefPubMed
13.
Forman, D., de Martel, C., Lacey, C. J., et al. (2012). Global burden of human papillomavirus and related diseases. Vaccine 30. Supplement, 5, F12–F23. doi:10.​1016/​j.​vaccine.​2012.​07.​055.
14.
Sturgis, E. M., & Cinciripini, P. M. (2007). Trends in head and neck cancer incidence in relation to smoking prevalence. Cancer, 110, 1429–1435. doi:10.​1002/​cncr.​22963.CrossRefPubMed
15.
Gillison, M. L., Broutian, T., Pickard, R. K. L., et al. (2012). Prevalence of oral HPV infection in the United States, 2009–2010. JAMA, 307, 693–703. doi:10.​1001/​jama.​2012.​101.CrossRefPubMed
16.
Fakhry, C., Westra, W. H., Li, S., et al. (2008). Improved survival of patients with human papillomavirus–positive head and neck squamous cell carcinoma in a prospective clinical trial. JNCI J Natl Cancer Inst, 100, 261–269. doi:10.​1093/​jnci/​djn011.CrossRefPubMed
17.
Marur, S., D’Souza, G., Westra, W. H., & Forastiere, A. A. (2010). HPV-associated head and neck cancer: a virus-related cancer epidemic. The Lancet Oncology, 11, 781–789. doi:10.​1016/​S1470-2045(10)70017-6.CrossRefPubMedPubMedCentral
18.
Lechner, M., Frampton, G. M., Fenton, T., et al. (2013). Targeted next-generation sequencing of head and neck squamous cell carcinoma identifies novel genetic alterations in HPV+ and HPV- tumors. Genome Medicine, 5, 49. doi:10.​1186/​gm453.CrossRefPubMedPubMedCentral
19.
Lo, Y. M. D., Chan, L. Y. S., Chan, A. T. C., et al. (1999). Quantitative and temporal correlation between circulating cell-free Epstein-Barr virus DNA and tumor recurrence in nasopharyngeal carcinoma. Cancer Research, 59, 5452–5455.PubMed
20.
Sun, P., Chen, C., Cheng, Y.-K., et al. (2014). Serologic biomarkers of Epstein-Barr virus correlate with TNM classification according to the seventh edition of the UICC/AJCC staging system for nasopharyngeal carcinoma. Eur Arch Oto-Rhino-Laryngol Off J Eur Fed Oto-Rhino-Laryngol Soc EUFOS Affil Ger Soc Oto-Rhino-Laryngol - Head Neck Surg, 271, 2545–2554. doi:10.​1007/​s00405-013-2805-5.
21.
Pfister, D. G., Ang, K.-K., Brizel, D. M., et al. (2011). Head and neck cancers. Journal of the National Comprehensive Cancer Network, 9, 596–650.CrossRefPubMed
22.
Pfister, D. G., Ang, K.-K., Brizel, D. M., et al. (2013). Head and neck cancers, version 2.2013. Journal of the National Comprehensive Cancer Network, 11, 917–923.CrossRefPubMed
23.
Ang, K. K., Harris, J., Wheeler, R., et al. (2010). Human papillomavirus and survival of patients with Oropharyngeal cancer. The New England Journal of Medicine, 363, 24–35. doi:10.​1056/​NEJMoa0912217.CrossRefPubMedPubMedCentral
24.
O’Sullivan, B., Huang, S. H., Siu, L. L., et al. (2013). Deintensification candidate subgroups in human papillomavirus–related oropharyngeal cancer according to minimal risk of distant metastasis. Journal of Clinical Oncology, 31, 543–550. doi:10.​1200/​JCO.​2012.​44.​0164.CrossRefPubMed
25.
Marur, S., Li, S., Cmelak, A., et al. (2013). E 1308: a phase II trial of induction chemotherapy (IC) followed by cetuximab with low dose versus standard dose IMRT in patients with human papilloma virus (HPV)-associated resectable squamous cell carcinoma of the oropharynx (OPSCC). Journal of Clinical Oncology, 31, 6005–6005. doi:10.​1200/​jco.​2013.​31.​15_​suppl.​6005.
26.
Masterson, L., Moualed, D., Liu, Z. W., et al. (2014). De-escalation treatment protocols for human papillomavirus-associated oropharyngeal squamous cell carcinoma: a systematic review and meta-analysis of current clinical trials. European Journal of Cancer, 50, 2636–2648. doi:10.​1016/​j.​ejca.​2014.​07.​001.CrossRefPubMed
27.
Kowalski, L. P., & Carvalho, A. L. (2001). Influence of time delay and clinical upstaging in the prognosis of head and neck cancer. Oral Oncology, 37, 94–98. doi:10.​1016/​S1368-8375(00)00066-X.CrossRefPubMed
28.
Guggenheimer, J., Verbin, R. S., Johnson, J. T., et al. (1989). Factors delaying the diagnosis of oral and oropharyngeal carcinomas. Cancer, 64, 932–935. doi:10.​1002/​1097-0142(19890815)64:​4<932:​:​AID-CNCR2820640428>3​.​0.​CO;2-Y.CrossRefPubMed
29.
Allison, P., Franco, E., Black, M., & Feine, J. (1998). The role of professional diagnostic delays in the prognosis of upper aerodigestive tract carcinoma. Oral Oncology, 34, 147–153. doi:10.​1016/​S1368-8375(97)00088-2.CrossRefPubMed
30.
Gerlinger, M., Rowan, A. J., Horswell, S., et al. (2012). Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. The New England Journal of Medicine, 366, 883–892. doi:10.​1056/​NEJMoa1113205.CrossRefPubMedPubMedCentral
31.
Sidransky, D. (1997). Nucleic acid-based methods for the detection of cancer. Science, 278, 1054–1058. doi:10.​1126/​science.​278.​5340.​1054.CrossRefPubMed
32.
Sidransky, D., Von Eschenbach, A., Tsai, Y. C., et al. (1991). Identification of p53 gene mutations in bladder cancers and urine samples. Science, 252, 706–709.CrossRefPubMed
33.
Sidransky, D., Tokino, T., Hamilton, S. R., et al. (1992). Identification of ras oncogene mutations in the stool of patients with curable colorectal tumors. Science, 256, 102–105.CrossRefPubMed
34.
Boyle, J. O., Mao, L., Brennan, J. A., et al. (1994). Gene mutations in saliva as molecular markers for head and neck squamous cell carcinomas. American Journal of Surgery, 168, 429–432. doi:10.​1016/​S0002-9610(05)80092-3.CrossRefPubMed
35.
Lo, Y. M. D., Corbetta, N., Chamberlain, P. F., et al. (1997). Presence of fetal DNA in maternal plasma and serum. The Lancet, 350, 485–487. doi:10.​1016/​S0140-6736(97)02174-0.CrossRef
36.
Fan, H. C., Blumenfeld, Y. J., Chitkara, U., et al. (2008). Noninvasive diagnosis of fetal aneuploidy by shotgun sequencing DNA from maternal blood. Proceedings of the National Academy of Sciences, 105, 16266–16271. doi:10.​1073/​pnas.​0808319105.CrossRef
37.
Antonatos, D., Patsilinakos, S., Spanodimos, S., et al. (2006). Cell-free DNA levels as a prognostic marker in acute myocardial infarction. Annals of the New York Academy of Sciences, 1075, 278–281. doi:10.​1196/​annals.​1368.​037.CrossRefPubMed
38.
A D, C V, D A, et al (2009) Cell-free DNA levels in acute myocardial infarction patients during hospitalization. Acta Cardiologica 64:51–57. doi: 10.​2143/​AC.​64.​1.​2034362.
39.
Macher, H., Egea-Guerrero, J. J., Revuelto-Rey, J., et al. (2012). Role of early cell-free DNA levels decrease as a predictive marker of fatal outcome after severe traumatic brain injury. Clinica Chimica Acta, 414, 12–17. doi:10.​1016/​j.​cca.​2012.​08.​001.CrossRef
40.
Tsai, N.-W., Lin, T.-K., Chen, S.-D., et al. (2011). The value of serial plasma nuclear and mitochondrial DNA levels in patients with acute ischemic stroke. Clinica Chimica Acta, 412, 476–479. doi:10.​1016/​j.​cca.​2010.​11.​036.CrossRef
41.
Lengauer, C., Kinzler, K. W., & Vogelstein, B. (1998). Genetic instabilities in human cancers. Nature, 396, 643–649. doi:10.​1038/​25292.CrossRefPubMed
42.
Leary RJ, Sausen M, Kinde I, et al (2012) Detection of chromosomal alterations in the circulation of cancer patients with whole-genome sequencing. Sci Transl med 4:162ra154–162ra154. doi: 10.​1126/​scitranslmed.​3004742.
43.
Jahr, S., Hentze, H., Englisch, S., et al. (2001). DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Research, 61, 1659–1665.PubMed
44.
Stroun, M., Lyautey, J., Lederrey, C., et al. (2001). About the possible origin and mechanism of circulating DNA: apoptosis and active DNA release. Clinica Chimica Acta, 313, 139–142. doi:10.​1016/​S0009-8981(01)00665-9.CrossRef
45.
Bettegowda, C., Sausen, M., Leary, R. J., et al. (2014). Detection of circulating tumor DNA in early- and late-stage human malignancies. Science Translational Medicine, 6, 224ra24. doi:10.​1126/​scitranslmed.​3007094.CrossRefPubMedPubMedCentral
46.
Diehl, F., Schmidt, K., Durkee, K. H., et al. (2008). Analysis of mutations in DNA isolated from plasma and stool of colorectal cancer patients. Gastroenterology, 135, 489–498.e7. doi:10.​1053/​j.​gastro.​2008.​05.​039.CrossRefPubMedPubMedCentral
47.
Kinde I, Bettegowda C, Wang Y, et al (2013) Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci Transl med 5:167ra4–167ra4. doi: 10.​1126/​scitranslmed.​3004952.
48.
Diehl, F., Schmidt, K., Choti, M. A., et al. (2008). Circulating mutant DNA to assess tumor dynamics. Nature Medicine, 14, 985–990. doi:10.​1038/​nm.​1789.CrossRefPubMed
49.
Holdhoff, M., Schmidt, K., Donehower, R., & Diaz, L. A. (2009). Analysis of circulating tumor DNA to confirm somatic KRAS mutations. JNCI J Natl Cancer Inst, 101, 1284–1285. doi:10.​1093/​jnci/​djp240.CrossRefPubMed
50.
Diaz, L. A., & Bardelli, A. (2014). Liquid biopsies: genotyping circulating tumor DNA. Journal of Clinical Oncology, 32, 579–586. doi:10.​1200/​JCO.​2012.​45.​2011.CrossRefPubMedPubMedCentral
51.
Vogelstein, B., & Kinzler, K. W. (1999). Digital PCR. Proceedings of the National Academy of Sciences, 96, 9236–9241. doi:10.​1073/​pnas.​96.​16.​9236.CrossRef
52.
Dressman, D., Yan, H., Traverso, G., et al. (2003). Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proceedings of the National Academy of Sciences, 100, 8817–8822. doi:10.​1073/​pnas.​1133470100.CrossRef
53.
Liu Q, Sommer SS (2000) Pyrophosphorolysis-activated polymerization (PAP): application to allele-specific amplification. BioTechniques 29:1072–1076, 1078, 1080 passim.
54.
Nichols, A. C., Lowes, L. E., Szeto, C. C. T., et al. (2012). Detection of circulating tumor cells in advanced head and neck cancer using the CellSearch system. Head & Neck, 34, 1440–1444. doi:10.​1002/​hed.​21941.CrossRef
55.
Wang, Z., Cui, K., Xue, Y., et al. (2015). Prognostic value of circulating tumor cells in patients with squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Med Oncol Northwood Lond Engl, 32, 164. doi:10.​1007/​s12032-015-0579-x.CrossRef
56.
Diehl, F., Li, M., Dressman, D., et al. (2005). Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proceedings of the National Academy of Sciences of the United States of America, 102, 16368–16373. doi:10.​1073/​pnas.​0507904102.CrossRefPubMedPubMedCentral
57.
Li, M., Diehl, F., Dressman, D., et al. (2006). BEAMing up for detection and quantification of rare sequence variants. Nature Methods, 3, 95–97. doi:10.​1038/​nmeth850.CrossRefPubMed
58.
Reinert, T., Schøler, L. V., Thomsen, R., et al. (2016). Analysis of circulating tumour DNA to monitor disease burden following colorectal cancer surgery. Gut, 65, 625–634. doi:10.​1136/​gutjnl-2014-308859.CrossRefPubMed
59.
Ito, K., Hibi, K., Ando, H., et al. (2002). Usefulness of analytical CEA doubling time and half-life time for overlooked synchronous metastases in colorectal carcinoma. Japanese Journal of Clinical Oncology, 32, 54–58. doi:10.​1093/​jjco/​hyf011.CrossRefPubMed
60.
Yoshimasu, T., Maebeya, S., Suzuma, T., et al. (1999). Disappearance curves for tumor markers after resection of intrathoracic malignancies. The International Journal of Biological Markers, 14, 99–105.PubMed
61.
Riedinger, J. M., Wafflart, J., Ricolleau, G., et al. (2006). CA 125 half-life and CA 125 nadir during induction chemotherapy are independent predictors of epithelial ovarian cancer outcome: results of a French multicentric study. Annals of Oncology, 17, 1234–1238. doi:10.​1093/​annonc/​mdl120.CrossRefPubMed
62.
Dawson, S.-J., Tsui, D. W. Y., Murtaza, M., et al. (2013). Analysis of circulating tumor DNA to monitor metastatic breast cancer. The New England Journal of Medicine, 368, 1199–1209. doi:10.​1056/​NEJMoa1213261.CrossRefPubMed
63.
McVeigh, T. P., Hughes, L. M., Miller, N., et al. (2014). The impact of Oncotype DX testing on breast cancer management and chemotherapy prescribing patterns in a tertiary referral centre. European Journal of Cancer, 50, 2763–2770. doi:10.​1016/​j.​ejca.​2014.​08.​002.CrossRefPubMedPubMedCentral
64.
Lebofsky, R., Decraene, C., Bernard, V., et al. (2015). Circulating tumor DNA as a non-invasive substitute to metastasis biopsy for tumor genotyping and personalized medicine in a prospective trial across all tumor types. Molecular Oncology, 9, 783–790. doi:10.​1016/​j.​molonc.​2014.​12.​003.CrossRefPubMed
65.
Tsao, S. C.-H., Weiss, J., Hudson, C., et al. (2015). Monitoring response to therapy in melanoma by quantifying circulating tumour DNA with droplet digital PCR for BRAF and NRAS mutations. Scientific Reports, 5, 11198. doi:10.​1038/​srep11198.CrossRefPubMed
66.
Ahn, S. M., Chan, J. Y. K., Zhang, Z., et al. (2014). Saliva and plasma quantitative polymerase chain reaction–based detection and surveillance of human papillomavirus–related head and neck cancer. JAMA Otolaryngol Neck Surg, 140, 846–854. doi:10.​1001/​jamaoto.​2014.​1338.CrossRef
67.
Wang Y, Springer S, Mulvey CL, et al (2015) Detection of somatic mutations and HPV in the saliva and plasma of patients with head and neck squamous cell carcinomas. Sci Transl Med 7:293ra104. doi: 10.​1126/​scitranslmed.​aaa8507.