Skip to main content
Top

14-02-2017 | Esophageal cancer | Book chapter | Article

4. Esophageal Cancer: Radiation Therapy Planning

Authors: Matthew J. Boyer, MD, PhD, Christopher G. Willett, MD, Manisha Palta, MD, Brian G. Czito, MD

Publisher: Springer International Publishing

Abstract

The treatment of esophageal cancer with radiation therapy presents many challenges. The propensity of esophageal cancer to invade and spread within the submucosa with resultant lymph node involvement requires particular attention to areas of elective coverage beyond the gross tumor. Moreover, the intimate association of the esophagus and gastroesophageal junction with adjacent organs in the thoracic cavity and upper abdomen dictates attention to normal tissue constraints. Although most patients receive preoperative chemoradiation, patients treated postoperatively may require larger treatment fields, further increasing treatment-related normal tissue toxicities. This chapter will discuss the rationale of radiation treatment field design and dose for esophageal cancer patients based on thoracic anatomy, imaging, and patterns of spread/failure, as well as practical considerations for patient simulation and treatment.
Literature
1.
Edge SB, Byrd DR, Compton CC, Fritz AG, Greene FL, Trotti A, (eds). Esophagus, in AJCC cancer staging manual (7th ed). New York: Springer-Verlag; 2010.
2.
Akiyama H et al. Principles of surgical treatment for carcinoma of the esophagus: analysis of lymph node involvement. Ann Surg. 1981;194(4):438–46.CrossRefPubMedPubMedCentral
3.
Huang W et al. Pattern of lymph node metastases and its implication in radiotherapeutic clinical target volume in patients with thoracic esophageal squamous cell carcinoma: a report of 1077 cases. Radiother Oncol. 2010;95(2):229–33.CrossRefPubMed
4.
Rudiger Siewert J et al. Adenocarcinoma of the esophagogastric junction: results of surgical therapy based on anatomical/topographic classification in 1,002 consecutive patients. Ann Surg. 2000;232(3):353–61.CrossRefPubMedPubMedCentral
5.
Dresner SM et al. The pattern of metastatic lymph node dissemination from adenocarcinoma of the esophagogastric junction. Surgery. 2001;129(1):103–9.CrossRefPubMed
6.
Earlam R, Cunha-Melo JR. Oesophogeal squamous cell carcinomas: II. A critical view of radiotherapy. Br J Surg. 1980;67(7):457–61.CrossRefPubMed
7.
Kelly S et al. A systematic review of the staging performance of endoscopic ultrasound in gastro-oesophageal carcinoma. Gut. 2001;49(4):534–9.CrossRefPubMedPubMedCentral
8.
Konski A et al. The integration of 18-fluoro-deoxy-glucose positron emission tomography and endoscopic ultrasound in the treatment-planning process for esophageal carcinoma. Int J Radiat Oncol Biol Phys. 2005;61(4):1123–8.CrossRefPubMed
9.
Rosch T. Endosonographic staging of esophageal cancer: a review of literature results. Gastrointest Endosc Clin N Am. 1995;5(3):537–47.PubMed
10.
Flamen P et al. Utility of positron emission tomography for the staging of patients with potentially operable esophageal carcinoma. J Clin Oncol. 2000;18(18):3202–10.PubMed
11.
Monjazeb AM et al. Outcomes of patients with esophageal cancer staged with [(1)(8)F]fluorodeoxyglucose positron emission tomography (FDG-PET): can postchemoradiotherapy FDG-PET predict the utility of resection? J Clin Oncol. 2010;28(31):4714–21.CrossRefPubMedPubMedCentral
12.
Ott K, Weber W, Siewert JR. The importance of PET in the diagnosis and response evaluation of esophageal cancer. Dis Esophagus. 2006;19(6):433–42.CrossRefPubMed
13.
Gao XS et al. Pathological analysis of clinical target volume margin for radiotherapy in patients with esophageal and gastroesophageal junction carcinoma. Int J Radiat Oncol Biol Phys. 2007;67(2):389–96.CrossRefPubMed
14.
van Hagen P et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366(22):2074–84.CrossRefPubMed
15.
Shapiro J et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): long-term results of a randomised controlled trial. Lancet Oncol. 2015;16(9):1090–8.CrossRefPubMed
16.
RTOG 1010. A phase III trial evaluating the addition of trastuzumab to trimodality treatment of Her2-overexpressing esophageal adenocarcinoma. [Cited 2016]. Available from: https://​www.​rtog.​org/​ClinicalTrials/​ProtocolTable/​StudyDetails.​aspx?​study=​1010.
17.
Wu AJ et al. Expert consensus contouring guidelines for intensity modulated radiation therapy in esophageal and gastroesophageal junction cancer. Int J Radiat Oncol Biol Phys. 2015;92(4):911–20.CrossRefPubMedPubMedCentral
18.
Meier I et al. Adenocarcinoma of the esophagogastric junction: the pattern of metastatic lymph node dissemination as a rationale for elective lymphatic target volume definition. Int J Radiat Oncol Biol Phys. 2008;70(5):1408–17.CrossRefPubMed
19.
Zhao KL et al. Three-dimensional conformal radiation therapy for esophageal squamous cell carcinoma: is elective nodal irradiation necessary? Int J Radiat Oncol Biol Phys. 2010;76(2):446–51.CrossRefPubMed
20.
Li M et al. Involved-field irradiation in definitive chemoradiotherapy for T4 squamous cell carcinoma of the esophagus. Curr Oncol. 2016;23(2):e131–7.CrossRefPubMedPubMedCentral
21.
Hazard L et al. Principles and techniques of radiation therapy for esophageal and gastroesophageal junction cancers. J Natl Compr Canc Netw. 2008;6(9):870–8.PubMed
22.
Cohen RJ et al. Esophageal motion during radiotherapy: quantification and margin implications. Dis Esophagus. 2010;23(6):473–9.CrossRefPubMedPubMedCentral
23.
Fenkell L et al. Dosimetric comparison of IMRT vs. 3D conformal radiotherapy in the treatment of cancer of the cervical esophagus. Radiother Oncol. 2008;89(3):287–91.CrossRefPubMed
24.
Wu VW, Sham JS, Kwong DL. Inverse planning in three-dimensional conformal and intensity-modulated radiotherapy of mid-thoracic oesophageal cancer. Br J Radiol. 2004;77(919):568–72.CrossRefPubMed
25.
Kataria T et al. Dosimetric comparison between Volumetric Modulated Arc Therapy (VMAT) vs Intensity Modulated Radiation Therapy (IMRT) for radiotherapy of mid esophageal carcinoma. J Cancer Res Ther. 2014;10(4):871–7.CrossRefPubMed
26.
Chandra A et al. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiother Oncol. 2005;77(3):247–53.CrossRefPubMed
27.
Kole TP et al. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer. Int J Radiat Oncol Biol Phys. 2012;83(5):1580–6.CrossRefPubMed
28.
Lin SH et al. Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2012;84(5):1078–85.CrossRefPubMedPubMedCentral
29.
Minsky BD et al. INT 0123 (Radiation Therapy Oncology Group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol. 2002;20(5):1167–74.CrossRefPubMed
30.
Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose-volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S42–9.CrossRefPubMed
31.
Hart JP et al. Radiation pneumonitis: correlation of toxicity with pulmonary metabolic radiation response. Int J Radiat Oncol Biol Phys. 2008;71(4):967–71.CrossRefPubMedPubMedCentral
32.
Lee HK et al. Postoperative pulmonary complications after preoperative chemoradiation for esophageal carcinoma: correlation with pulmonary dose-volume histogram parameters. Int J Radiat Oncol Biol Phys. 2003;57(5):1317–22.CrossRefPubMed
33.
Chun SG et al. Comparison of 3-D conformal and intensity modulated radiation therapy outcomes for locally advanced non-small cell lung cancer in NRG oncology/RTOG 0617. Int J Radiat Oncol Biol Phys. 2015;93(3):S1–2.CrossRef
34.
Ogino I et al. Symptomatic radiation-induced cardiac disease in long-term survivors of esophageal cancer. Strahlenther Onkol. 2016;192(6):359–67.CrossRefPubMed
35.
Lin SH et al. Radiation modality use and cardiopulmonary mortality risk in elderly patients with esophageal cancer. Cancer. 2016;122(6):917–28.CrossRefPubMed
36.
Grant MJ et al. Radiation-induced liver disease as a mimic of liver metastases at serial PET/CT during neoadjuvant chemoradiation of distal esophageal cancer. Abdom Imaging. 2014;39(5):963–8.CrossRefPubMedPubMedCentral
37.
Matzinger O et al. EORTC-ROG expert opinion: radiotherapy volume and treatment guidelines for neoadjuvant radiation of adenocarcinomas of the gastroesophageal junction and the stomach. Radiother Oncol. 2009;92(2):164–75.CrossRefPubMed
38.
Stahl M et al. Chemoradiation with and without surgery in patients with locally advanced squamous cell carcinoma of the esophagus. J Clin Oncol. 2005;23(10):2310–7.CrossRefPubMed
39.
Homs MY et al. Quality of life after palliative treatment for oesophageal carcinoma – a prospective comparison between stent placement and single dose brachytherapy. Eur J Cancer. 2004;40(12):1862–71.CrossRefPubMed
40.
Rosenblatt E et al. Adding external beam to intra-luminal brachytherapy improves palliation in obstructive squamous cell oesophageal cancer: a prospective multi-centre randomized trial of the International Atomic Energy Agency. Radiother Oncol. 2010;97(3):488–94.CrossRefPubMed
41.
Fakhrian K et al. Salvage radiotherapy in patients with recurrent esophageal carcinoma. Strahlenther Onkol. 2012;188(2):136–42.CrossRefPubMed
42.
Kim YS et al. Re-irradiation of recurrent esophageal cancer after primary definitive radiotherapy. Radiat Oncol J. 2012;30(4):182–8.CrossRefPubMedPubMedCentral
43.
Teli MA et al. Comparative evaluation between re-irradiation and demand endoscopic dilatation vs endoscopic dilatation alone in patients with recurrent/reactivated residual in-field esophageal malignancies. J Cancer Res Ther. 2008;4(3):121–5.CrossRefPubMed
44.
Saltzman JR, Gibson MK. Diagnosis and staging of esophageal cancer. In: Post TW, ed. UpToDate. Waltham: UpToDate. Accessed on 29 June 2016.