Skip to main content
Top

03-11-2016 | Endocrine cancers | Article

Impact of combined FDG-PET/CT and MRI on the detection of local recurrence and nodal metastases in thyroid cancer

Journal: Cancer Imaging

Authors: Johann-Martin Hempel, Roman Kloeckner, Sandra Krick, Daniel Pinto dos Santos, Simin Schadmand-Fischer, Patrick Boeßert, Sotirios Bisdas, Matthias M. Weber, Christian Fottner, Thomas J. Musholt, Mathias Schreckenberger, Matthias Miederer

Publisher: BioMed Central

Abstract

Background

Suspected recurrence of thyroid carcinoma is a diagnostic challenge when findings of both a radio iodine whole body scan and ultrasound are negative. PET/CT and MRI have shown to be feasible for detection of recurrent disease. However, the added value of a consensus reading by the radiologist and the nuclear medicine physician, which has been deemed to be helpful in clinical routines, has not been investigated. This study aimed to investigate the impact of combined FDG-PET/ldCT and MRI on detection of locally recurrent TC and nodal metastases in high-risk patients with special focus on the value of the multidisciplinary consensus reading.

Materials and methods

Forty-six patients with suspected locally recurrent thyroid cancer or nodal metastases after thyroidectomy and radio-iodine therapy were retrospectively selected for analysis. Inclusion criteria comprised elevated thyroglobulin blood levels, a negative ultrasound, negative iodine whole body scan, as well as combined FDG-PET/ldCT and MRI examinations.
Neck compartments in FDG-PET/ldCT and MRI examinations were independently analyzed by two blinded observers for local recurrence and nodal metastases of thyroid cancer. Consecutively, the scans were read in consensus. To explore a possible synergistic effect, FDG-PET/ldCT and MRI results were combined. Histopathology or long-term follow-up served as a gold standard.
For method comparison, sensitivity, specificity, positive and negative predictive values, and diagnostic accuracy were calculated.

Results

FDG-PET/ldCT was substantially more sensitive and more specific than MRI in detection of both local recurrence and nodal metastases. Inter-observer agreement was substantial both for local recurrence (κ = 0.71) and nodal metastasis (κ = 0.63) detection in FDG-PET/ldCT. For MRI, inter-observer agreement was substantial for local recurrence (κ = 0.69) and moderate for nodal metastasis (κ = 0.55) detection. In contrast, FDG-PET/ldCT and MRI showed only slight agreement (κ = 0.21). However, both imaging modalities identified different true positive results. Thus, the combination created a synergistic effect. The multidisciplinary consensus reading further increased sensitivity, specificity, and diagnostic accuracy.

Conclusions

FDG-PET/ldCT and MRI are complementary imaging modalities and should be combined to improve detection of local recurrence and nodal metastases of thyroid cancer in high-risk patients. The multidisciplinary consensus reading is a key element in the diagnostic approach.
Literature
1.
National Cancer Institute (U.S.). SEER Incidence Statistics - SEER Cancer Query Systems. 16.07.2015. http://​seer.​cancer.​gov/​canques/​incidence.​html. Accessed 27 Oct 2016.
2.
Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM, et al. Projecting Cancer Incidence and Deaths to 2030: The Unexpected Burden of Thyroid, Liver, and Pancreas Cancers in the United States. Cancer Res. 2014;74:2913–21. doi:10.​1158/​0008-5472.​CAN-14-0155.CrossRefPubMed
3.
Robert Koch Institut. Beiträge zur Gesundheitsberichterstattung des Bundes - Krebs in Deutschland 2009/2010. 9th ed. Berlin: Robert Koch-Institut; 2013.
4.
Mihailovic J, Prvulovic M, Ivkovic M, Markoski B, Martinov D. MRI versus 131I whole-body scintigraphy for the detection of lymph node recurrences in differentiated thyroid carcinoma. AJR Am J Roentgenol. 2010;195:1197–203. doi:10.​2214/​AJR.​09.​4172.CrossRefPubMed
5.
Weber T, Ohlhauser D, Hillenbrand A, Henne-Bruns D, Reske SN, Luster M, Reske S. Impact of FDG-PET computed tomography for surgery of recurrent or persistent differentiated thyroid carcinoma. Horm Metab Res. 2012;44:904–8. doi:10.​1055/​s-0032-1316351.CrossRefPubMed
6.
Song H-J, Xue Y-L, Xu Y-H, Qiu Z-L, Luo Q-Y. Rare metastases of differentiated thyroid carcinoma: pictorial review. Endocr Relat Cancer. 2011;18:74. doi:10.​1530/​ERC-11-0068.CrossRef
7.
Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016;26:1–133. doi:10.​1089/​thy.​2015.​0020.CrossRefPubMed
8.
Lind P, Kohlfurst S. Respective roles of thyroglobulin, radioiodine imaging, and positron emission tomography in the assessment of thyroid cancer. Semin Nucl Med. 2006;36:194–205. doi:10.​1053/​j.​semnuclmed.​2006.​03.​002.CrossRefPubMed
9.
Pacini F, Castagna MG, Brilli L, Pentheroudakis G, Group, on behalf of the ESMO Guidelines Working. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2012;23:vii110–9. doi:10.​1093/​annonc/​mds230.CrossRefPubMed
10.
Freudenberg LS, Antoch G, Frilling A, Jentzen W, Rosenbaum SJ, Kühl H, et al. Combined metabolic and morphologic imaging in thyroid carcinoma patients with elevated serum thyroglobulin and negative cervical ultrasonography: role of 124I-PET/CT and FDG-PET. Eur J Nucl Med Mol Imaging. 2008;35:950–7. doi:10.​1007/​s00259-007-0634-8.CrossRefPubMed
11.
Zoller M, Kohlfuerst S, Igerc I, Kresnik E, Gallowitsch H-J, Gomez I, Lind P. Combined PET/CT in the follow-up of differentiated thyroid carcinoma: what is the impact of each modality? Eur J Nucl Med Mol Imaging. 2007;34:487–95. doi:10.​1007/​s00259-006-0276-2.CrossRefPubMed
12.
Nahas Z, Goldenberg D, Fakhry C, Ewertz M, Zeiger M, Ladenson PW, et al. The role of positron emission tomography/computed tomography in the management of recurrent papillary thyroid carcinoma. Laryngoscope. 2005;115:237–43. doi:10.​1097/​01.​mlg.​0000154725.​00787.​00.CrossRefPubMed
13.
Grünwald F, Kälicke T, Feine U, Lietzenmayer R, Scheidhauer K, Dietlein M, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in thyroid cancer: results of a multicentre study. Eur J Nucl Med. 1999;26:1547–52.CrossRefPubMed
14.
Dietlein M, Scheidhauer K, Voth E, Theissen P, Schicha H. Fluorine-18 fluorodeoxyglucose positron emission tomography and iodine-131 whole-body scintigraphy in the follow-up of differentiated thyroid cancer. Eur J Nucl Med. 1997;24:1342–8.CrossRefPubMed
15.
Nagamachi S, Wakamatsu H, Kiyohara S, Nishii R, Mizutani Y, Fujita S, et al. Comparison of diagnostic and prognostic capabilities of (1)(8)F-FDG-PET/CT, (1)(3)(1)I-scintigraphy, and diffusion-weighted magnetic resonance imaging for postoperative thyroid cancer. Jpn J Radiol. 2011;29:413–22. doi:10.​1007/​s11604-011-0572-z.CrossRefPubMed
16.
Kim S-J, Lee TH, Kim I-J, Kim Y-K. Clinical implication of F-18 FDG PET/CT for differentiated thyroid cancer in patients with negative diagnostic iodine-123 scan and elevated thyroglobulin. Eur J Radiol. 2009;70:17–24. doi:10.​1016/​j.​ejrad.​2007.​12.​004.CrossRefPubMed
17.
Caetano R, Bastos CR, de Oliveira IA, da Silva RM, Fortes C, Pepe VL, et al. Accuracy of positron emission tomography and positron emission tomography-CT in the detection of differentiated thyroid cancer recurrence with negative (131) I whole-body scan results: A meta-analysis. Head Neck. 2016;38:316–27. doi:10.​1002/​hed.​23881.CrossRefPubMed
18.
Treglia G, Muoio B, Giovanella L, Salvatori M. The role of positron emission tomography and positron emission tomography/computed tomography in thyroid tumours: an overview. Eur Arch Otorhinolaryngol. 2013;270:1783–7. doi:10.​1007/​s00405-012-2205-2.CrossRefPubMed
19.
Nanni C, Rubello D, Fanti S, Farsad M, Ambrosini V, Rampin L, et al. Role of 18F-FDG-PET and PET/CT imaging in thyroid cancer. Biomed Pharmacother. 2006;60:409–13. doi:10.​1016/​j.​biopha.​2006.​07.​008.CrossRefPubMed
20.
Platzek I, Beuthien-Baumann B, Schneider M, Gudziol V, Langner J, Schramm G, et al. PET/MRI in head and neck cancer: initial experience. Eur J Nucl Med Mol Imaging. 2013;40:6–11. doi:10.​1007/​s00259-012-2248-z.CrossRefPubMed
21.
Bhargava P, Rahman S, Wendt J. Atlas of Confounding Factors in Head and Neck PET/CT Imaging. Clin Nucl Med. 2011;36:e20–9. doi:10.​1097/​RLU.​0b013e318212c872​.CrossRefPubMed
22.
Gross ND, Weissman JL, Talbot JM, Andersen PE, Wax MK, Cohen JI, et al. MRI detection of cervical metastasis from differentiated thyroid carcinoma. Laryngoscope. 2001;111:1905–9. doi:10.​1097/​00005537-200111000-00006.CrossRefPubMed
23.
Nagarajah J, Jentzen W, Hartung V, Rosenbaum-Krumme S, Mikat C, Heusner TA, et al. Diagnosis and dosimetry in differentiated thyroid carcinoma using 124I PET: comparison of PET/MRI vs PET/CT of the neck. Eur J Nucl Med Mol Imaging. 2011;38:1862–8. doi:10.​1007/​s00259-011-1866-1.CrossRefPubMed
24.
Dammann F, Bootz F, Cohnen M, Hassfeld S, Tatagiba M, Kösling S. Diagnostic imaging modalities in head and neck disease. Dtsch Arztebl Int. 2014;111:417–23. doi:10.​3238/​arztebl.​2014.​0417.PubMedPubMedCentral
25.
Miyakoshi A, Dalley RW, Anzai Y. Magnetic resonance imaging of thyroid cancer. Top Magn Reson Imaging. 2007;18:293–302. doi:10.​1097/​RMR.​0b013e318572b76.CrossRefPubMed
26.
Queiroz MA, Hüllner M, Kuhn F, Huber G, Meerwein C, Kollias S, et al. PET/MRI and PET/CT in follow-up of head and neck cancer patients. Eur J Nucl Med Mol Imaging. 2014;41:1066–75. doi:10.​1007/​s00259-014-2707-9.CrossRefPubMed
27.
Daftary A. PET-MRI: Challenges and new directions. Indian J Nucl Med. 2010;25:3–5. doi:10.​4103/​0972-3919.​63590.CrossRefPubMedPubMedCentral
28.
Binse I, Poeppel TD, Ruhlmann M, Gomez B, Umutlu L, Bockisch A, Rosenbaum-Krumme SJ. Imaging with I in differentiated thyroid carcinoma: is PET/MRI superior to PET/CT? Eur J Nucl Med Mol Imaging. 2015. doi:10.​1007/​s00259-015-3288-y
29.
Dercle L, Deandreis D, Terroir M, Leboulleux S, Lumbroso J, Schlumberger M, et al. Evaluation of I PET/CT and I PET/MRI in the management of patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2016. doi:10.​1007/​s00259-016-3334-4
30.
Vrachimis A, Burg MC, Wenning C, Allkemper T, Weckesser M, Schafers M, Stegger L. (18)FFDG PET/CT outperforms (18)FFDG PET/MRI in differentiated thyroid cancer. Eur J Nucl Med Mol Imaging. 2016;43:212–20. doi:10.​1007/​s00259-015-3195-2.CrossRefPubMed
31.
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33:159–74.CrossRefPubMed
32.
Wiebel JL, Esfandiari NH, Papaleontiou M, Worden FP, Haymart MR, Wiebel JL, Worden FP. Evaluating Positron Emission Tomography Use in Differentiated Thyroid Cancer. Thyroid. 2015;25:1026–32. doi:10.​1089/​thy.​2015.​0062.CrossRefPubMedPubMedCentral
33.
Gimbel RW, Fontelo P, Stephens MB, Olsen CH, Bunt C, Ledford CJW, et al. Radiation exposure and cost influence physician medical image decision making: a randomized controlled trial. Med Care. 2013;51:628–32. doi:10.​1097/​MLR.​0b013e3182928fd5​.CrossRefPubMed
34.
Wiebel JL, Banerjee M, Muenz DG, Worden FP, Haymart MR. Trends in imaging after diagnosis of thyroid cancer. Cancer. 2015;121:1387–94. doi:10.​1002/​cncr.​29210.CrossRefPubMedPubMedCentral
35.
Chen Q, Raghavan P, Mukherjee S, Jameson MJ, Patrie J, Xin W, et al. Accuracy of MRI for the diagnosis of metastatic cervical lymphadenopathy in patients with thyroid cancer. Radiol Med. 2015;120:959–66. doi:10.​1007/​s11547-014-0474-0.CrossRefPubMed
36.
Thurfjell EL, Lernevall KA, Taube AA. Benefit of independent double reading in a population-based mammography screening program. Radiology. 1994;191:241–4. doi:10.​1148/​radiology.​191.​1.​8134580.CrossRefPubMed
37.
Anttinen I, Pamilo M, Soiva M, Roiha M. Double reading of mammography screening films—one radiologist or two? Clin Radiol. 1993;48:414–21.CrossRefPubMed