Skip to main content
Top

30-04-2016 | Colorectal cancer | Article

Advanced imaging of colorectal cancer: From anatomy to molecular imaging

Journal: Insights into Imaging

Authors: Roberto García-Figueiras, Sandra Baleato-González, Anwar R. Padhani, Ana Marhuenda, Antonio Luna, Lidia Alcalá, Ana Carballo-Castro, Ana Álvarez-Castro

Publisher: Springer Berlin Heidelberg

Abstract

Abstract

Imaging techniques play a key role in the management of patients with colorectal cancer. The introduction of new advanced anatomical, functional, and molecular imaging techniques may improve the assessment of diagnosis, prognosis, planning therapy, and assessment of response to treatment of these patients. Functional and molecular imaging techniques in clinical practice may allow the assessment of tumour-specific characteristics and tumour heterogeneity. This paper will review recent developments in imaging technologies and the evolving roles for these techniques in colorectal cancer.

Teaching Points

Imaging techniques play a key role in the management of patients with colorectal cancer.
Advanced imaging techniques improve the evaluation of these patients.
Functional and molecular imaging allows assessment of tumour hallmarks and tumour heterogeneity.
Literature
1.
De Divitiis C, Nasti G, Montano M, Fisichella R, Iaffaioli RV, Berretta M (2014) Prognostic and predictive response factors in colorectal cancer patients: Between hope and reality. World J Gastroenterol 20:15049–15059CrossRefPubMedPubMedCentral
2.
Kekelidze M, D'Errico L, Pansini M, Tyndall A, Hohmann J (2013) Colorectal cancer: Current imaging methods and future perspectives for the diagnosis, staging and therapeutic response evaluation. World J Gastroenterol 19:8502–8514CrossRefPubMedPubMedCentral
3.
McQueen AS, Scott J (2012) CT staging of colorectal cancer: What do you find in the chest? Clin Radiol 4:352–358CrossRef
4.
Lim GH, Koh DC, Cheong WK, Wong KS, Tsang CB (2009) Natural history of small, “indeterminate” hepatic lesions in patients with colorectal cancer. Dis Colon Rectum 52:1487–1491CrossRefPubMed
5.
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: The next generation. Cell 144:646–674CrossRefPubMed
6.
Kapse N, Goh V (2009) Functional imaging of colorectal cancer: Positron emission tomography, magnetic resonance imaging, and computed tomography. Clin Colorectal Cancer 8:77–87CrossRef
7.
Figueiras RG, Goh V, Padhani AR, Naveira AB, Caamaño AG, Martin CV (2010) The role of functional imaging in colorectal cancer. AJR Am J Roentgenol 195:54–66CrossRefPubMed
8.
Prezzi D, Goh V (2015) Rectal cancer magnetic resonance imaging: Imaging beyond morphology. Clin Oncol (R Coll Radiol). doi:10.​1016/​j.​clon.​2015.​10.​010
9.
Torkzad MR, Påhlman L, Glimelius B (2007) Magnetic resonance imaging (MRI) in rectal cancer: A comprehensive review. Insights Imaging 1:245–267CrossRef
10.
Spada C, Stoker J, Alarcon O et al (2015) Clinical indications for computed tomographic colonography: European Society of Gastrointestinal Endoscopy (ESGE) and European Society of Gastrointestinal and Abdominal Radiology (ESGAR) guideline. Eur Radiol 25:331–345CrossRefPubMedPubMedCentral
11.
Laghi A (2014) Computed tomography colonography in 2014: An update on technique and indications. World J Gastroenterol 20:16858–16867CrossRefPubMedPubMedCentral
12.
de Haan M, Pickhardt PJ, Stoker J (2015) CT colonography: Accuracy, acceptance, safety and position in organised population screening. Gut 64:342–350CrossRefPubMed
13.
ACR–SAR–SCBT-MR practice parameter for the performance of computed tomography (CT) colonography in adults. Available at: http://​www.​acr.​org/​~/​media/​A81531ACA92F4505​8A83B5281E8FE826​.​pdf. Accesed July 25, 2015
14.
Kornprat P, Pollheimer MJ, Lindtner RA, Schlemmer A, Rehak P, Langner C (2011) Value of tumor size as a prognostic variable in colorectal cancer: A critical reappraisal. Am J Clin Oncol 34:43–49CrossRefPubMed
15.
Balta AZ, Özdemir Y, Sücüllü İ et al (2014) Can horizontal diameter of colorectal tumor help predict prognosis? Ulus Cerrahi Derg 30:115–119PubMedPubMedCentral
16.
Todosi A, Huțanu I, Gavrilescu MM et al (2015) Assessment of tumor parameters as factors of aggressiveness in colon cancer. J Surg [Jurnalul de Chirurgie] 10:271–275
17.
Neri E, Guidi E, Pancrazi F et al (2015) MRI tumor volume reduction rate vs tumor regression grade in the pre-operative re-staging of locally advanced rectal cancer after chemo-radiotherapy. Eur J Radiol. doi:10.​1016/​j.​ejrad.​2015.​08.​008
18.
Kang JH, Kim YC, Kim H et al (2010) Tumor volume changes assessed by three-dimensional magnetic resonance volumetry in rectal cancer patients after preoperative chemoradiation: The impact of the volume reduction ratio on the prediction of pathologic complete response. Int J Radiat Oncol Biol Phys 76:1018–1025CrossRefPubMed
19.
Petrillo M, Fusco R, Catalano O et al (2015) MRI for assessing response to neoadjuvant therapy in locally advanced rectal cancer using DCE-MR and DW-MR data sets: A preliminary report. Biomed Res Int. doi:10.​1155/​2015/​514740
20.
Adams RB, Aloia TA, Loyer E et al (2013) Selection for hepatic resection of colorectal liver metastases: Expert consensus statement. HPB (Oxford) 15:91–103CrossRefPubMedCentral
21.
Frankel TL, Gian RK, Jarnagin WR (2012) Preoperative imaging for hepatic resection of colorectal cancer metastasis. J Gastrointest Oncol 3:11–18PubMedPubMedCentral
22.
Lim MC, Tan CH, Cai J, Zheng J, Kow AW (2014) CT volumetry of the liver: Where does it stand in clinical practice? Clin Radiol 69:887–895CrossRefPubMed
23.
Torkzad MR, Norén A, Kullberg J (2012) Stereology: A novel technique for rapid assessment of liver volume. Insights Imaging 3:387–393CrossRefPubMedPubMedCentral
24.
Boellaard TN, Henneman OD, Streekstra GJ et al (2013) The feasibility of colorectal cancer detection using dual-energy computed tomography with iodine mapping. Clin Radiol 68:799–806CrossRefPubMed
25.
Kato T, Uehara K, Ishigaki S et al (2015) Clinical significance of dual-energy CT-derived iodine quantification in the diagnosis of metastatic LN in colorectal cancer. Eur J Surg Oncol 41:1464–1470CrossRefPubMed
26.
Liu H, Yan F, Pan Z et al (2015) Evaluation of dual energy spectral CT in differentiating metastatic from non-metastatic lymph nodes in rectal cancer: initial experience. Eur J Radiol 84:228–234CrossRefPubMed
27.
Davnall F, Yip CS, Ljungqvist G et al (2012) Assessment of tumor heterogeneity: An emerging imaging tool for clinical practice? Insights Imaging 2012(3):573–589CrossRef
28.
Cui C, Cai H, Liu L, Li L, Tian H, Li L (2011) Quantitative analysis and prediction of regional lymph node status in rectal cancer based on computed tomography imaging. Eur Radiol 21:2318–2325CrossRefPubMed
29.
Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266:177–184CrossRefPubMed
30.
Lubner MG, Stabo N, Lubner SJ et al (2015) CT textural analysis of hepatic metastatic colorectal cancer: Pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging 40:2331–2337CrossRefPubMed
31.
García-Figueiras R, Padhani AR, Beer AJ et al (2015) Imaging of tumor angiogenesis for radiologists-Part 1: Biological and technical basis. Curr Probl Diagn Radiol 44:407–424CrossRefPubMed
32.
Kierkels RG, Backes WH, Janssen MH et al (2010) Comparison between perfusion computed tomography and dynamic contrast-enhanced magnetic resonance imaging in rectal cancer. Int J Radiat Oncol Biol Phys 77:400–408CrossRefPubMed
33.
Sahani DV, Kalva SP, Hamberg LM et al (2005) Assessing tumor perfusion and treatment response in rectal cancer with multisection CT: Initial observations. Radiology 234:785–792CrossRefPubMed
34.
Goh V, Glynne-Jones R (2014) Perfusion CT imaging of colorectal cancer. Br J Radiol 87:20130811CrossRefPubMedPubMedCentral
35.
García-Figueiras R, Goh VJ, Padhani AR et al (2013) CT perfusion in oncologic imaging: A useful tool? AJR Am J Roentgenol 200:8–19CrossRefPubMed
36.
Kim YE, Lim JS, Choi J et al (2013) Perfusion parameters of dynamic contrast-enhanced magnetic resonance imaging in patients with rectal cancer: Correlation with microvascular density and vascular endothelial growth factor expression. Korean J Radiol 14:878–885CrossRefPubMedPubMedCentral
37.
Hong HS, Kim SH, Choi J et al (2013) Correlations of dynamic contrast-enhanced magnetic resonance imaging with morphologic, angiogenic, and molecular prognostic factors in rectal cancer. Yonsei Med J 54:123–130CrossRefPubMedPubMedCentral
38.
Lim JS, Kim D, Baek SE et al (2012) Perfusion MRI for the prediction of treatment response after preoperative chemoradiotherapy in locally advanced rectal cancer. Eur Radiol 22:1693–1700CrossRefPubMed
39.
Gollub MJ, Gultekin DH, Akin O et al (2012) Dynamic contrast enhanced-MRI for the detection of pathological complete response to neoadjuvant chemotherapy for locally advanced rectal cancer. Eur Radiol 22:821–831CrossRefPubMed
40.
Martens MH, Subhani S, Heijnen LA et al (2015) Can perfusion MRI predict response to preoperative treatment in rectal cancer? Radiother Oncol 114:218–223CrossRefPubMed
41.
Intven M, Reerink O, Philippens ME (2015) Dynamic contrast enhanced MR imaging for rectal cancer response assessment after neo-adjuvant chemoradiation. J Magn Reson Imaging 41:1646–1653CrossRefPubMed
42.
Tong T, Sun Y, Gollub MJ et al (2015) Dynamic contrast-enhanced MRI: Use in predicting pathological complete response to neoadjuvant chemoradiation in locally advanced rectal cancer. J Magn Reson Imaging. doi:10.​1002/​jmri.​24835 PubMedCentral
43.
Gollub MJ, Cao K, Gollub MJ et al (2013) Prognostic aspects of DCE-MRI in recurrent rectal cancer. Eur Radiol 42:673–680
44.
Beuzit L, Eliat PA, Brun V et al (2015) Dynamic contrast-enhanced MRI: Study of inter-software accuracy and reproducibility using simulated and clinical data. J Magn Reson Imaging. doi:10.​1002/​jmri.​25101 PubMed
45.
Bäuerle T, Seyler L, Münter M et al (2013) Diffusion-weighted imaging in rectal carcinoma patients without and after chemoradiotherapy: A comparative study with histology. Eur J Radiol 82:444–452CrossRefPubMed
46.
Ganten MK, Schuessler M, Bäuerle T et al (2013) The role of perfusion effects in monitoring of chemoradiotherapy of rectal carcinoma using diffusion-weighted imaging. Cancer Imaging 13:548–556CrossRefPubMedPubMedCentral
47.
García-Figueiras R, Padhani AR, Beer AJ et al (2015) Imaging of tumor angiogenesis for radiologist part 2: Clinical utility. Curr Probl Diagn Radiol 44:425–436CrossRefPubMed
48.
Sun H, Xu Y, Yang Q, Wang W (2014) Assessment of tumor grade and angiogenesis in colorectal cancer: Whole-volume perfusion CT. Acad Radiol 21:750–757CrossRefPubMed
49.
Kim JW, Jeong YY, Chang NK et al (2012) Perfusion CT in colorectal cancer: Comparison of perfusion parameters with tumor grade and microvessel density. Korean J Radiol 13(Suppl 1):S89–S97CrossRefPubMedPubMedCentral
50.
Hayano K, Fujishiro T, Sahani DV et al (2014) Computed tomography perfusion imaging as a potential imaging biomarker of colorectal cancer. World J Gastroenterol 20:17345–17351CrossRefPubMedPubMedCentral
51.
Prezzi D, Khan A, Goh V (2015) Perfusion CT imaging of treatment response in oncology. Eur J Radiol. doi:10.​1016/​j.​ejrad.​2015.​03.​022 PubMed
52.
Janssen MH, Aerts HJ, Kierkels RG et al (2010) Tumor perfusion increases during hypofractionated short-course radiotherapy in rectal cancer: Sequential perfusion-CT findings. Radiother Oncol 94:156–160CrossRefPubMed
53.
Willett CG, Duda DG, di Tomaso E et al (2009) Efficacy, safety, and biomarkers of neoadjuvant bevacizumab, radiation therapy, and fluorouracil in rectal cancer: A multidisciplinary phase II study. J Clin Oncol 27:3020–3026CrossRefPubMedPubMedCentral
54.
Anzidei M, Napoli A, Zaccagna F et al (2011) Liver metastases from colorectal cancer treated with conventional and antiangiogenetic chemotherapy: Evaluation with liver computed tomography perfusion and magnetic resonance diffusion-weighted imaging. J Comput Assist Tomogr 35:690–696CrossRefPubMed
55.
Padhani AR, Liu G, Koh DM et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: Consensus and recommendations. Neoplasia 11:102–125CrossRefPubMedPubMedCentral
56.
Ichikawa T, Erturk SM, Motosugi U et al (2006) High-B-value diffusion weighted MRI in colorectal cancer. AJR Am J Roentgenol 187:181–184CrossRefPubMed
57.
Heijnen LA, Lambregts DM, Mondal D et al (2013) Diffusion-weighted MR imaging in primary rectal cancer staging demonstrates but does not characterise lymph nodes. Eur Radiol 23:3354–3360CrossRefPubMed
58.
Kim SH, Yoon JH, Lee Y (2015) Added value of morphologic characteristics on diffusion-weighted images for characterizing lymph nodes in primary rectal cancer. Clin Imaging 39:1046–1051CrossRefPubMed
59.
Cho EY, Kim SH, Yoon JH et al (2013) Apparent diffusion coefficient for discriminating metastatic from non-metastatic lymph nodes in primary rectal cancer. Eur J Radiol 82:e662–e668CrossRefPubMed
60.
Lambregts DM, Maas M, Cappendijk VC et al (2011) Whole-body diffusion-weighted magnetic resonance imaging: Current evidence in oncology and potential role in colorectal cancer staging. Eur J Cancer 47:2107–2116CrossRefPubMed
61.
Gong J, Cao W, Zhang Z et al (2015) Diagnostic efficacy of whole-body diffusion-weighted imaging in the detection of tumour recurrence and metastasis by comparison with 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography or computed tomography in patients with gastrointestinal cancer. Gastroenterol Rep (Oxford) 3:128–135CrossRef
62.
Sun Y, Tong T, Cai S, Bi R, Xin C, Gu Y (2014) Apparent Diffusion Coefficient (ADC) value: A potential imaging biomarker that reflects the biological features of rectal cancer. PLoS One 9:e109371CrossRefPubMedPubMedCentral
63.
Song I, Kim SH, Lee SJ, Choi JY, Kim MJ, Rhim H (2012) Value of diffusion-weighted imaging in the detection of viable tumour after neoadjuvant chemoradiation therapy in patients with locally advanced rectal cancer: Comparison with T2 weighted and PET/CT imaging. Br J Radiol 85:577–586CrossRefPubMedPubMedCentral
64.
Jung SH, Heo SH, Kim JW et al (2012) Predicting response to neoadjuvant chemoradiation therapy in locally advanced rectal cancer: Diffusion-weighted 3 Tesla MR imaging. J Magn Reson Imaging 35:110–116CrossRefPubMed
65.
Barbaro B, Vitale R, Valentini V et al (2012) Diffusion-weighted magnetic resonance imaging in monitoring rectal cancer response to neoadjuvant chemoradiotherapy. Int J Radiat Oncol Biol Phys 83:594–959CrossRefPubMed
66.
Padhani AR, Koh DM (2011) Diffusion MR imaging for monitoring of treatment response. Magn Reson Imaging Clin N Am 19:181–209CrossRefPubMed
67.
Park MJ, Kim SH, Lee SJ, Jang KM, Rhim H (2011) Locally advanced rectal cancer: added value of diffusion-weighted MR imaging for predicting tumor clearance of the mesorectal fascia after neoadjuvant chemotherapy and radiation therapy. Radiology 260:771–780CrossRefPubMed
68.
Curvo-Semedo L, Lambregts DM, Maas M et al (2011) Rectal cancer: assessment of complete response to preoperative combined radiation therapy with chemotherapy—conventional MR volumetry versus diffusion-weighted MR imaging. Radiology 60:734–743CrossRef
69.
Cho SH, Kim GC, Jang YJ et al (2014) Locally advanced rectal cancer: Post-chemoradiotherapy ADC histogram analysis for predicting a complete response. Acta Radiol 56:1042–1050CrossRefPubMed
70.
Joye I, Deroose CM, Vandecaveye V, Haustermans K (2014) The role of diffusion-weighted MRI and (18)F-FDG PET/CT in the prediction of pathologic complete response after radiochemotherapy for rectal cancer: A systematic review. Radiother Oncol 113:158–165CrossRefPubMed
71.
van der Paardt MP, Zagers MB, Beets-Tan RG, Stoker J, Bipat S (2013) Patients who undergo preoperative chemoradiotherapy for locally advanced rectal cancer restaged by using diagnostic MR imaging: A systematic review and meta-analysis. Radiology 269:101–112CrossRefPubMed
72.
Xie H, Sun T, Chen M et al (2015) Effectiveness of the apparent diffusion coefficient for predicting the response to chemoradiation therapy in locally advanced rectal cancer: A systematic review and meta-analysis. Medicine (Baltimore) 94(6):e517CrossRef
73.
Lambregts DM, Lahaye MJ, Heijnen LA et al (2015) MRI and diffusion-weighted MRI to diagnose a local tumour regrowth during long-term follow-up of rectal cancer patients treated with organ preservation after chemoradiotherapy. Eur Radiol
74.
Rosenkrantz AB, Padhani AR, Chenevert TL et al (2015) Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 42:1190–1202CrossRefPubMed
75.
Roels S, Slagmolen P, Nuyts J et al (2008) Biological image guided radiotherapy in rectal cancer: Is there a role for FMISO or FLT, next to FDG? Acta Oncol 47:1237–1248CrossRefPubMed
76.
Muijs CT, Beukema JC, Widder J et al (2011) 18F-FLT-PET for detection of rectal cancer. Radiother Oncol 98:357–359CrossRefPubMed
77.
Herbertson RA, Scarsbrook AF, Lee ST, Tebbutt N, Scott AM (2009) Established, emerging and future roles of PET/CT in the management of colorectal cancer. Clin Radiol 64:225–237CrossRefPubMed
78.
Schmoll HJ, Van Cutsem E, Stein A et al (2012) ESMO consensus guidelines for management of patients with colon and rectal cancer. A personalized approach to clinical decision making. Ann Oncol 23:2479–2516CrossRefPubMed
79.
Agarwal A, Marcus C, Xiao J, Nene P, Kachnic LA, Subramaniam RM (2014) FDG PET/CT in the management of colorectal and anal cancers. AJR Am J Roentgenol 203:1109–1119CrossRefPubMed
80.
Polat E, Bostanci EB, Aksoy E et al (2015) The impact of PET/CT on the management of hepatic and extra hepatic metastases from gastrointestinal cancers. Eur J Radiol 84:1165–1170CrossRefPubMed
81.
Guillem JG, Ruby JA, Leibold T et al (2013) Neither FDG-PET Nor CT can distinguish between a pathological complete response and an incomplete response after neoadjuvant chemoradiation in locally advanced rectal cancer: A prospective study. Ann Surg 258:289–295CrossRefPubMed
82.
Guerra L, Niespolo R, Di Pisa G et al (2011) Change in glucose metabolism measured by 18F-FDG PET/CT as a predictor of histopathologic response to neoadjuvant treatment in rectal cancer. Abdom Imaging 36:38–45CrossRefPubMed
83.
Maffione AM, Marzola MC, Capirci C, Colletti PM, Rubello D (2015) Value of (18)F-FDG PET for predicting response to neoadjuvant therapy in rectal cancer: Systematic review and meta-analysis. AJR Am J Roentgenol 204:1261–1268CrossRefPubMed
84.
Krug B, Crott R, de Cannière L, D'Hondt L, Vander Borght T (2013) A systematic review of the predictive value of 18F-fluoro-2-deoxyglucose positron emission tomography on survival in locally advanced rectal cancer after neoadjuvant chemoradiation. Color Dis 15:e627–e633CrossRef
85.
Deleau C, Buecher B, Rousseau C et al (2011) Clinical impact of fluorodeoxyglucose-positron emission tomography scan/computed tomography in comparison with computed tomography on the detection of colorectal cancer recurrence. Eur J Gastroenterol Hepatol 23:275–281CrossRefPubMed
86.
Pace L, Nicolai E, Aiello M, Catalano OA, Salvatore M (2013) Whole-body PET/MRI in oncology: Current status and clinical applications. Clin Transl Imaging 1:31–44CrossRef
87.
Kim MJ, Lee SJ, Lee JH et al (2012) Detection of rectal cancer and response to concurrent chemoradiotherapy by proton magnetic resonance spectroscopy. Magn Reson Imaging 30:848–853CrossRefPubMed
88.
Jeon YS, Cho SG, Choi SK et al (2004) Differentiation of recurrent rectal cancer and postoperative fibrosis: Preliminary report by proton MR spectroscopy. J Korean Soc Magn Reson Med 8:24–31
89.
Padhani AR, Krohn KA, Lewis JS, Alber M (2007) Imaging oxygenation of human tumours. Eur Radiol 17:861–872CrossRefPubMedPubMedCentral
90.
Wu L, Cao Y, Liao C, Huang J, Gao F (2011) Diagnostic performance of USPIO-enhanced MRI for lymph-node metastases in different body regions: A meta-analysis. Eur J Radiol 80:582–589CrossRefPubMed
91.
Lahaye MJ, Engelen SM, Kessels AG et al (2008) USPIO-enhanced MR imaging for nodal staging in patients with primary rectal cancer: Predictive criteria. Radiology 246:804–811CrossRefPubMed
92.
Thoeny HC, Triantafyllou M, Birkhaeuser FD et al (2009) Combined ultrasmall superparamagnetic particles of iron oxide-enhanced and diffusion-weighted magnetic resonance imaging reliably detect pelvic lymph node metastases in normal-sized nodes of bladder and prostate cancer patients. Eur Urol 55:761–769CrossRefPubMed
93.
Lambregts DM, Heijnen LA, Maas M et al (2013) Gadofosveset-enhanced MRI for the assessment of rectal cancer lymph nodes: Predictive criteria. Abdom Imaging 38:720–727CrossRefPubMed
94.
Attenberger UI, Pilz LR, Morelli JN et al (2014) Multi-parametric MRI of rectal cancer—do quantitative functional MR measurements correlate with radiologic and pathologic tumor stages? Eur J Radiol 83:1036–1043CrossRefPubMed
95.
Hötker AM, Garcia-Aguilar J, Gollub J (2014) Multiparametric MRI of rectal cancer in the assessment of response to therapy: A systematic review. Dis Colon Rectum 57:790–799CrossRefPubMed
96.
Heo SH, Kim JW, Shin SS, Jeong YY, Kang HK (2014) Multimodal imaging evaluation in staging of rectal cancer. World J Gastroenterol 20:4244–4255CrossRefPubMedPubMedCentral
97.
Heijmen L, Ter Voert EE, Oyen WJ et al (2015) Multimodality imaging to predict response to systemic treatment in patients with advanced colorectal cancer. PLoS One 10:e0120823CrossRefPubMedPubMedCentral
98.
Goh V, Engledow A, Rodriguez-Justo M et al (2012) The flow-metabolic phenotype of primary colorectal cancer: Assessment by integrated 18F-FDG PET/perfusion CT with histopathologic correlation. J Nucl Med 53:687–692CrossRefPubMed
99.
Gu J, Khong PL, Wang S et al (2011) Dynamic contrast-enhanced MRI of primary rectal cancer: Quantitative correlation with positron emission tomography/computed tomography. J Magn Reson Imaging 33:340–347CrossRefPubMed
100.
Gu J, Khong PL, Wang S, Chan Q, Law W, Zhang J (2011) Quantitative assessment of diffusion-weighted MR imaging in patients with primary rectal cancer: Correlation with FDG-PET/CT. Mol Imaging Biol 13:1020–1028CrossRefPubMedPubMedCentral
101.
Fischer MA, Vrugt B, Alkadhi H, Hahnloser D, Hany TF, Veit-Haibach P (2014) Integrated 18F-FDG PET/perfusion CT for the monitoring of neoadjuvant chemoradiotherapy in rectal carcinoma: Correlation with histopathology. Eur J Nucl Med Mol Imaging 41:1563–1573CrossRefPubMed