Skip to main content
Top

28-07-2017 | Chronic lymphocytic leukemia | Article

Targeting B Cell Signaling in Chronic Lymphocytic Leukemia

Journal: Current Oncology Reports

Authors: Jon E. Arnason, Jennifer R. Brown

Publisher: Springer US

Abstract

In recent years, a revolution in the management of chronic lymphocytic leukemia (CLL) has centered on the targeting of the B cell receptor (BCR) signaling pathway. Our improved understanding of the biology of cell signaling in CLL and the development of oral kinase inhibitors directed at the BCR pathway has led to the approval of two new agents and has the potential to radically change the treatment of CLL in both the relapsed/refractory and upfront settings. In this review, we will describe the underlying biology of the BCR signaling pathway. We will discuss the landmark clinical trials resulting in the approval of the Bruton tyrosine kinase (BTK) inhibitor ibrutinib and the PI3Kδ inhibitor idelalisib. We will highlight ongoing trials that are evaluating the use of combinations of these agents with standard chemotherapy. We will evaluate some of the emerging data regarding toxicity, potential off-target effects, and mechanisms of resistance to BCR signaling pathway blockade. Finally, we will highlight some of the next-generation BCR pathway inhibitors currently in development.
Literature
1.
Dameshek W. Chronic lymphocytic leukemia—an accumulative disease of immunolgically incompetent lymphocytes. Blood. 1967;29(4):Suppl:566–84.
2.
Rai KR. A critical analysis of staging in CLL. In: Chronic lymphocytic leukemia: recent progress and future direction. UCLA Symp Mol Cell Biol New Ser. 1987;59:253.
3.
Fischer K, Cramer P, Busch R, Stilgenbauer S, Bahlo J, Schweighofer CD, et al. Bendamustine combined with rituximab in patients with relapsed and/or refractory chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic Lymphocytic Leukemia Study Group. J Clin Oncol. 2011;29(26):3559–66.CrossRefPubMed
4.
Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R, Mayer J, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376(9747):1164–74.CrossRefPubMed
5.
Tam CS, O'Brien S, Plunkett W, Wierda W, Ferrajoli A, Wang X, et al. Long-term results of first salvage treatment in CLL patients treated initially with FCR (fludarabine, cyclophosphamide, rituximab). Blood. 2014;124(20):3059–64.CrossRefPubMedPubMedCentral
6.
Eichhorst B, Fink A-M, Busch R, Lange E, Köppler H, Kiehl M, et al. Chemoimmunotherapy with fludarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) versus bendamustine and rituximab (BR) In: Previously untreated and physically fit patients (pts) with advanced chronic lymphocytic leukemia (CLL): results of a planned analysis. [Abstract 526] Blood. 2013;122(21).
7.
Eichhorst B, Fink AM, Bahlo J, Busch R, Kovacs G, Maurer C, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17(7):928–42.CrossRefPubMed
8.
Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.CrossRefPubMed
9.
Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94(6):1840–7.PubMed
10.
Fischer K, Bahlo J, Fink AM, Goede V, Herling CD, Cramer P, et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: updated results of the CLL8 trial. Blood. 2016;127(2):208–15.CrossRefPubMed
11.
• Thompson PA, Tam CS, O'Brien SM, Wierda WG, Stingo F, Plunkett W, et al. Fludarabine, cyclophosphamide, and rituximab treatment achieves long-term disease-free survival in IGHV-mutated chronic lymphocytic leukemia. Blood. 2016;127(3):303–9. Demonstrated the potential for long term remission with FCR in patients with mutated IGVH. CrossRefPubMedPubMedCentral
12.
Yamamoto T, Yamanashi Y, Toyoshima K. Association of Src-family kinase Lyn with B-cell antigen receptor. Immunol Rev. 1993;132:187–206.CrossRefPubMed
13.
Rolli V, Gallwitz M, Wossning T, Flemming A, Schamel WW, Zurn C, et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell. 2002;10(5):1057–69.CrossRefPubMed
14.
Herman SE, Gordon AL, Wagner AJ, Heerema NA, Zhao W, Flynn JM, et al. Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078–88.CrossRefPubMedPubMedCentral
15.
Buchner M, Fuchs S, Prinz G, Pfeifer D, Bartholome K, Burger M, et al. Spleen tyrosine kinase is overexpressed and represents a potential therapeutic target in chronic lymphocytic leukemia. Cancer Res. 2009;69(13):5424–32.CrossRefPubMed
16.
Duhren-von Minden M, Ubelhart R, Schneider D, Wossning T, Bach MP, Buchner M, et al. Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature. 2012;489(7415):309–12.CrossRefPubMed
17.
Chiorazzi N, Efremov DG. Chronic lymphocytic leukemia: a tale of one or two signals? Cell Res. 2013;23(2):182–5.CrossRefPubMed
18.
Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88–92.CrossRefPubMedPubMedCentral
19.
Herman SE, Gordon AL, Hertlein E, Ramanunni A, Zhang X, Jaglowski S, et al. Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood. 2011;117(23):6287–96.CrossRefPubMedPubMedCentral
20.
Rozovski U, Harris DM, Li P, Liu Z, Jain P, Ferrajoli A, et al. Ibrutinib disrupts the metabolic program of CLL cells in-vivo. Blood. 2016;128(22):4348.
21.
Herman SEM, Liu D, Landau DA, Sun C, Farooqui M, Wu CJ, et al. Dynamic alterations in gene expression in ibrutinib treated CLL reveal profound impact on multiple signaling pathways. Blood. 2016;128(22):189.
22.
• Advani RH, Buggy JJ, Sharman JP, Smith SM, Boyd TE, Grant B, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol. 2012;31(1):88–94. Ibrutinib activity in non-Hodgkin lymphoma. CrossRefPubMedPubMedCentral
23.
• Byrd JC, Furman RR, Coutre SE, Flinn IW, Burger JA, Blum KA, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42. Ibruitinib efficacy in CLL. CrossRefPubMedPubMedCentral
24.
• Byrd JC, Brown JR, O'Brien S, Barrientos JC, Kay NE, Reddy NM, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23. Ibrutinib efficacy relative to ofatumumab in CLL. CrossRefPubMedPubMedCentral
25.
• Brown JR, Hillmen P, O'Brien S, Barrientos JC, Reddy NM, Coutre SE, Tam CS, Mulligan SP, Jaeger U, Barr PM, Furman RR, Kipps TJ, Cymbalista F, Thornton P, Caligaris-Cappio F, Delgado J, Montillo M, DeVos S, Moreno C, Pagel JM, Munir T, Burger JA, Chung D, Lin J, Gau L, Chang B, Cole G, Hsu E, James DF, Byrd JC. Extended follow-up and impact of high-risk prognostic factors from the phase 3 RESONATETM study in patients with previously treated CLL/SLL. Leukemia. 2017. doi:10.​1038/​leu.​2017.​175.
26.
Farooqui MZ, Valdez J, Martyr S, Aue G, Saba N, Niemann CU, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: a phase 2, single-arm trial. Lancet Oncol. 2015;16(2):169–76.CrossRefPubMed
27.
O'Brien S, Jones JA, Coutre SE, Mato AR, Hillmen P, Tam C, et al. Ibrutinib for patients with relapsed or refractory chronic lymphocytic leukaemia with 17p deletion (RESONATE-17): a phase 2, open-label, multicentre study. Lancet Oncol. 2016;17(10):1409–18.CrossRefPubMed
28.
O'Brien S, Furman RR, Coutre SE, Sharman JP, Burger JA, Blum KA, et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: an open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014;15(1):48–58.CrossRefPubMed
29.
Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373(25):2425–37.CrossRefPubMedPubMedCentral
30.
Barr P, Robak T, Owen CJ, Tedeschi A, Bairey O, Bartlett NL, et al. Updated efficacy and safety from the phase 3 resonate-2 study: ibrutinib as first-line treatment option in patients 65 years and older with chronic lymphocytic leukemia/small lymphocytic leukemia. Blood. 2016;128(22):234.
31.
Lannutti BJ, Meadows SA, Herman SE, Kashishian A, Steiner B, Johnson AJ, et al. CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood. 2010;117(2):591–4.CrossRefPubMed
32.
• Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-Johnston ND, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123(22):3390–7. Idelalisib effective in CLL. CrossRefPubMedPubMedCentral
33.
• Furman RR, Sharman JP, Coutre SE, Cheson BD, Pagel JM, Hillmen P, et al. Idelalisib and rituximab in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007. Idelalisib and rituximab more effective than rituximab alone in CLL. CrossRefPubMedPubMedCentral
34.
Gopal AK, Kahl BS, de Vos S, Wagner-Johnston ND, Schuster SJ, Jurczak WJ, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med. 2014;370(11):1008–18.CrossRefPubMedPubMedCentral
35.
Brown JR, Barrientos JC, Barr PM, Flinn IW, Burger JA, Tran A, et al. The Bruton tyrosine kinase inhibitor ibrutinib with chemoimmunotherapy in patients with chronic lymphocytic leukemia. Blood. 2015;125(19):2915–22.CrossRefPubMedPubMedCentral
36.
Chanan-Khan A, Cramer P, Demirkan F, Fraser G, Silva RS, Grosicki S, et al. Ibrutinib combined with bendamustine and rituximab compared with placebo, bendamustine, and rituximab for previously treated chronic lymphocytic leukaemia or small lymphocytic lymphoma (HELIOS): a randomised, double-blind, phase 3 study. Lancet Oncol. 2016;17(2):200–11.CrossRefPubMed
37.
Kipps TJ, Hillmen P, Demirkan F, Grosicki S, Coutre SE, Barrientos JC, et al. 11q Deletion (del11q) is not a prognostic factor for adverse outcomes for patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) treated with ibrutinib: pooled data from 3 randomized phase 3 studies. Blood. 2016;128(22):2042.
38.
Burger JA, Keating MJ, Wierda WG, Hartmann E, Hoellenriegel J, Rosin NY, et al. Safety and activity of ibrutinib plus rituximab for patients with high-risk chronic lymphocytic leukaemia: a single-arm, phase 2 study. Lancet Oncol. 2014;15(10):1090–9.CrossRefPubMedPubMedCentral
39.
Davids MS, Kim HT, Nicotra A, Savell A, Francoeur K, Hellman J, et al. TGR-1202 in combination with ibrutinib in patients with relapsed or refractory CLL or MCL: preliminary results of a multicenter phase I/Ib study. Blood. 2016;128(22):641.
40.
Davids MS, Kim HT, Brander DM, Bsat J, Savell A, Francoeur K, et al. Initial results of a multicenter, phase II study of ibrutinib plus FCR (iFCR) as frontline therapy for younger CLL patients. Blood. 2016;128(22):3243.
41.
Jones JA, Woyach J, Awan FT, Maddocks KJ, Whitlow T, Ruppert AS, et al. Phase 1b results of a phase 1b/2 study of obinutuzmab, ibrutinib, and venetoclax in relapsed/refractory chronic lymphocytic leukemia (CLL). Blood. 2016;128(22):639.
42.
Zelenetz AD, Barrientos JC, Brown JR, Coiffier B, Delgado J, Egyed M, et al. Idelalisib or placebo in combination with bendamustine and rituximab in patients with relapsed or refractory chronic lymphocytic leukaemia: interim results from a phase 3, randomised, double-blind, placebo-controlled trial. Lancet Oncol. 2017;18(3):297–311
43.
Zelenetz AD, Brown JR, Delgado J, Eradat H, Ghia P, Jacob A, et al. Updated analysis of overall survival in randomized phase III study of idelalisib in combination with bendamustine and rituximab in patients with relapsed/refractory CLL. Blood. 2016;128(22):231.
44.
Fiorcari S, Brown WS, McIntyre BW, Estrov Z, Maffei R, O'Brien S, et al. The PI3-kinase delta inhibitor idelalisib (GS-1101) targets integrin-mediated adhesion of chronic lymphocytic leukemia (CLL) cell to endothelial and marrow stromal cells. PLoS One. 2013;8(12):e83830.CrossRefPubMedPubMedCentral
45.
Herishanu Y, Perez-Galan P, Liu D, Biancotto A, Pittaluga S, Vire B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563–74.CrossRefPubMedPubMedCentral
46.
Cheson BD, Byrd JC, Rai KR, Kay NE, O'Brien SM, Flinn IW, et al. Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Oncol. 2012;30(23):2820–2.CrossRefPubMedPubMedCentral
47.
Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Dohner H, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 Guidelines. Blood. 2008;111(12):5446–56.CrossRefPubMedPubMedCentral
48.
Woyach JA, Smucker K, Smith LL, Lozanski A, Zhong Y, Ruppert AS, et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood. 2014;123(12):1810–7.CrossRefPubMedPubMedCentral
49.
Quek LS, Bolen J, Watson SP. A role for Bruton's tyrosine kinase (Btk) in platelet activation by collagen. Curr Biol. 1998;8(20):1137–40.CrossRefPubMed
50.
Atkinson BT, Ellmeier W, Watson SP. Tec regulates platelet activation by GPVI in the absence of Btk. Blood. 2003;102(10):3592–9.CrossRefPubMed
51.
Hamazaki Y, Kojima H, Mano H, Nagata Y, Todokoro K, Abe T, et al. Tec is involved in G protein-coupled receptor- and integrin-mediated signalings in human blood platelets. Oncogene. 1998;16(21):2773–9.CrossRefPubMed
52.
Kunk PR, Mock J, Devitt ME, Palkimas S, Sen J, Portell CA, et al. Major bleeding with ibrutinib: more than expected. Blood. 2016;128(22):3229.
53.
Pavlik A, Barr H, Dotson E, Byrd JC, Blum KA, Awan FT, et al. Major bleeding complications among patients treated with ibrutinib and concomitant antiplatelet, anticoagulant, or supplemental therapy. Blood. 2016;128(22):4387.
54.
Kamel S, Horton L, Ysebaert L, Levade M, Burbury K, Tan S, et al. Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregation. Leukemia. 2015;29(4):783–7.CrossRefPubMed
55.
Leong DP, Caron F, Hillis C, Duan A, Healey JS, Fraser G, et al. The risk of atrial fibrillation with ibrutinib use: a systematic review and meta-analysis. Blood. 2016;128(1):138–40.CrossRefPubMed
56.
Thompson PA, Levy V, Tam CS, al Nawakil C, Goudot FX, Quinquenel A, et al. The impact of atrial fibrillation on subsequent survival of patients receiving ibrutinib as treatment of chronic lymphocytic leukemia (CLL): An international study. Blood. 2016;128(22):3242.
57.
Coutre S, Byrd JC, Hillmen P, Barrientos JC, Barr PM, Devereux S, et al. Integrated and long-term safety analysis of ibrutinib in patients with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). Blood. 2016;128(22):4383.
58.
Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–49.CrossRefPubMedPubMedCentral
59.
Fraietta JA, Beckwith KA, Patel PR, Ruella M, Zheng Z, Barrett DM, et al. Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood. 2016;127(9):1117–27.CrossRefPubMedPubMedCentral
60.
Ruella M, Kenderian SS, Shestova O, Fraietta JA, Qayyum S, Zhang Q, et al. The addition of the BTK inhibitor Ibrutinib to anti-CD19 chimeric antigen receptor T cells (CART19) improves responses against mantle cell lymphoma. Clin Cancer Res. 2016;22(11):2684–96.CrossRefPubMed
61.
Geyer MB, Park JH, Riviere I, Senechal B, Wang X, Purdon TJ, et al. Implications of concurrent ibrutinib therapy on CAR T-cell manufacturing and phenotype and on clinical outcomes following CD19-targeted CAR T-cell administration in adults with relapsed/refractory CLL. Blood. 2016;128(22):58.
62.
Long M, Beckwith KA, Do P, Bethany ML, Gordon G, Lehman AM, et al. Ibrutinib represents a novel class of immune modulating therapeutics that enhances the survival of activated T cells in vitro and in vivo through a non-BTK mediated mechanism. Blood. 2016;128(22):3238.
63.
Damle R, Schaffer M, Chaturvedi S, Phelps C, Aquino R, Mahler M, et al. Early changes in circulating T-cell immune profiles in patients with relapsed chronic lymphocytic leukemia/small lymphocytic lymphoma: data from the phase 3, double-blind HELIOS trial. Blood. 2016;128(22):4397.
64.
Biancotto A, Chang BY, Buggy JJ, McCoy JP, Farooqui M, Wiestner A. Cytokine and T-cell phenotypic changes upon in vivo ibrutinib therapy for CLL—targeting both CLL cells and the tumor-microenvironment. Blood. 2013;122(21):2856.
65.
Kohrt HE, Sagiv-Barfi I, Rafiq S, Herman SE, Butchar JP, Cheney C, et al. Ibrutinib antagonizes rituximab-dependent NK cell-mediated cytotoxicity. Blood. 2014;123(12):1957–60.CrossRefPubMedPubMedCentral
66.
Da Roit F, Engelberts PJ, Taylor RP, Breij EC, Gritti G, Rambaldi A, et al. Ibrutinib interferes with the cell-mediated anti-tumor activities of therapeutic CD20 antibodies: implications for combination therapy. Haematologica. 2015;100(1):77–86.CrossRefPubMedPubMedCentral
67.
Andrick B, Alwhaibi A, DeRemer D, Quershi S, Khan R, Shenoy S, et al. Antibody response to pneumococcal conjugate vaccine (PCV13) in chronic lymphocytic leukemia patients receiving ibrutinib. Blood. 2016;128(22):5597.
68.
Rogers KA, Lehman AM, Cheney C, Goettl VM, Mantel R, Smith LL, et al. Inhibitors of Bruton's tyrosine kinase reduce anti-red blood cell response in a murine model of autoimmune hemolytic anemia. Blood. 2016;128(22):1259.
69.
Manda S, Dunbar N, Marx-Wood CR, Danilov AV. Ibrutinib is an effective treatment of autoimmune haemolytic anaemia in chronic lymphocytic leukaemia. Br J Haematol. 2015;170(5):734–6.CrossRefPubMed
70.
St Bernard R, Hsia CC. Safe utilization of ibrutinib with or without steroids in chronic lymphocytic leukemia patients with autoimmune hemolytic anemia. Ann Hematol. 2015;94(12):2077–9.CrossRefPubMed
71.
Molica S, Levato L, Mirabelli R. Chronic lymphocytic leukemia, autoimmune hemolytic anemia and ibrutinib: a case report and review of the literature. Leuk Lymphoma. 2016;57(3):735–7.CrossRefPubMed
72.
Cavazzini F, Lista E, Quaglia FM, Formigaro L, Cavallari M, Martinelli S, et al. Response to ibrutinib of refractory life-threatening autoimmune hemolytic anemia occurring in a relapsed chronic lymphocytic leukemia patient with 17p deletion. Leuk Lymphoma. 2016;57(11):2685–8.CrossRefPubMed
73.
Lampson BL, Kasar SN, Matos TR, Morgan EA, Rassenti L, Davids MS, et al. Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood. 2016;128(2):195–203.CrossRefPubMedPubMedCentral
74.
Yeung CCS, Hockenbery DM, Westerhoff M, Coutre S, Sedlak RH, Dubowy RL, et al. Pathology results of tissue biopsy during idelalisib-associated diarrhea/colitis. Blood. 2016;128(22):4391.
75.
Patton DT, Garden OA, Pearce WP, Clough LE, Monk CR, Leung E, et al. Cutting edge: the phosphoinositide 3-kinase p110 delta is critical for the function of CD4+CD25+Foxp3+ regulatory T cells. J Immunol. 2006;177(10):6598–602.CrossRefPubMed
76.
Oak JS, Deane JA, Kharas MG, Luo J, Lane TE, Cantley LC, et al. Sjogren’s syndrome-like disease in mice with T cells lacking class 1A phosphoinositide-3-kinase. Proc Natl Acad Sci U S A. 2006;103(45):16882–7.CrossRefPubMedPubMedCentral
77.
Yates J, Rovis F, Mitchell P, Afzali B, Tsang JY, Garin M, et al. The maintenance of human CD4+ CD25+ regulatory T cell function: IL-2, IL-4, IL-7 and IL-15 preserve optimal suppressive potency in vitro. Int Immunol. 2007;19(6):785–99.CrossRefPubMed
78.
Liu D, Zhang T, Marshall AJ, Okkenhaug K, Vanhaesebroeck B, Uzonna JE. The p110delta isoform of phosphatidylinositol 3-kinase controls susceptibility to Leishmania major by regulating expansion and tissue homing of regulatory T cells. J Immunol. 2009;183(3):1921–33.CrossRefPubMed
79.
Patton DT, Wilson MD, Rowan WC, Soond DR, Okkenhaug K. The PI3K p110delta regulates expression of CD38 on regulatory T cells. PLoS One. 6(3):e17359.
80.
Woyach JA, Furman RR, Liu TM, Ozer HG, Zapatka M, Ruppert AS, et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94.CrossRefPubMedPubMedCentral
81.
Liu TM, Woyach JA, Zhong Y, Lozanski A, Lozanski G, Dong S, et al. Hypermorphic mutation of phospholipase C, gamma2 acquired in ibrutinib-resistant CLL confers BTK independency upon B-cell receptor activation. Blood. 2015;126(1):61–8.CrossRefPubMedPubMedCentral
82.
Woyach JA, Guinn D, Ruppert AS, Blachly JS, Lozanski A, Heerema NA, et al. The development and expansion of resistant subclones precedes relapse during ibrutinib therapy in patients with CLL. Blood. 2016;128(22):55.
83.
Farag SM, Newton D, Doody G, Mahmoud LA, Fouda MI, El Ghannam DM, et al. Molecular mechanisms of ibrutinib resistance: defining a logical approach to improving targeted therapy in CLL. Blood. 2016;128(22):2046.
84.
Reiff SD, Mantel R, Smith LL, McWhorter S, Goettl VM, Johnson AJ, et al. The Bruton's tyrosine kinase (BTK) inhibitor ARQ 531 effectively inhibits wild type and C481S mutant BTK and is superior to ibrutinib in a mouse model of chronic lymphocytic leukemia. Blood. 2016;128(22):3232.
85.
Guisot NES, Best SA, Wright V, Thomason A, Woyach JA, Mantel R, et al. REDX08608, a Novel, potent and selective, reversible BTK inhibitor with efficacy and equivalent potency against wild-type and mutant C481S BTK. Blood. 2016;128(22):4399.
86.
Neuman LL, Ward R, Arnold D, Combs DL, Gruver D, Hill W, et al. First-in-human phase 1a study of the safety, pharmacokinetics, and pharmacodynamics of the noncovalent Bruton tyrosine kinase (BTK) inhibitor SNS-062 in healthy subjects. Blood. 2016;128(22):2032.
87.
Ghia P, Ljungström V, Tausch E, Agathangelidis A, Scheffold A, Scarfo L, et al. Whole-exome sequencing revealed no recurrent mutations within the PI3K pathway in relapsed chronic lymphocytic leukemia patients progressing under idelalisib treatment. Blood. 2016;128(22):2770.
88.
Scheffold A, Jebaraj BMC, Tausch E, Yahiaoui A, Dolnik A, Blaette TJ, et al. In vivo modeling of resistance to PI3Kδ inhibitor treatment using EμTCL1-Tg tumor transfer model. Blood. 2016;128(22):190.
89.
Byrd JC, Harrington B, O'Brien S, Jones JA, Schuh A, Devereux S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374(4):323–32.CrossRefPubMed
90.
Awan FT, Schuh A, Brown JR, Furman RR, Pagel JM, Hillmen P, et al. Acalabrutinib monotherapy in patients with ibrutinib intolerance: results from the phase 1/2 ACE-CL-001 clinical study. Blood. 2016;128(22):638.
91.
Walter HS, Rule SA, Dyer MJ, Karlin L, Jones C, Cazin B, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016;127(4):411–9.CrossRefPubMedPubMedCentral
92.
Liclican A, Xing W, Serafini L, Wang T, Brendza K, Lutz J, et al. Biochemical characterization of GS-4059 as a potent and selective covalent irreversible inhibitor of Bruton’s tyrosine kinase. Blood. 2016;128(22):1594.
93.
Salles GA, Morschhauser F, Cheson B, Rule SA, Fegan C, Guillaume C, et al. Preliminary results of a phase 1b dose escalation and dose expansion study of GS-4059 in combination with idelalisib in subjects with B-cell malignancies. Blood. 2016;128(22):2961.
94.
Arnason JE, Brown JR. B cell receptor pathway in chronic lymphocytic leukemia: specific role of CC-292. Immunotargets Ther. 2014;3:29–38.PubMedPubMedCentral
95.
Brown JR, Harb WA, Hill BT, Gabrilove J, Sharman JP, Schreeder MT, et al. Phase I study of single-agent CC-292, a highly selective Bruton’s tyrosine kinase inhibitor, in relapsed/refractory chronic lymphocytic leukemia. Haematologica. 2016;101(7):e295–8.CrossRefPubMedPubMedCentral
96.
Tam CS, Opat S, Cull G, Trotman J, Gottlieb D, Simpson D, et al. Twice daily dosing with the highly specific BTK inhibitor, Bgb-3111, achieves complete and continuous BTK occupancy in lymph nodes, and is associated with durable responses in patients (pts) with chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). Blood. 2016;128(22):642.
97.
Brown JR, Davids MS, Rodon J, Abrisqueta P, Kasar SN, Lager J, et al. Phase I trial of the pan-PI3K inhibitor pilaralisib (SAR245408/XL147) in patients with chronic lymphocytic leukemia (CLL) or relapsed/refractory lymphoma. Clin Cancer Res. 2015;21(14):3160–9.CrossRefPubMed
98.
Dreyling M, Cunningham D, Bouabdallah K, Assouline S, Van den Neste E, Vitolo U, et al. Phase 2A Study of Copanlisib, a Novel PI3K Inhibitor, in Patients with Indolent Lymphoma. Blood. 2014;124(21):1701.
99.
O'Brien S, Patel M, Kahl BS, Horwitz SM, Foss FM, Porcu P, et al. Duvelisib (IPI-145), a PI3K-δ,γ inhibitor, is clinically active in patients with relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;124(21):3334.
100.
Davids MS, Kim HT, Gilbert E, Cowen L, Francoeur K, Hellman J, et al. Preliminary results of a phase Ib study of duvelisib in combination with FCR (dFCR) in previously untreated, younger patients with CLL. Blood. 2015;126(23):4158.
101.
Flinn IW, Cherry M, Maris M, Matous JV, Berdeja JG, Patel MR. Combination trial of duvelisib (IPI-145) with bendamustine, rituximab, or bendamustine/rituximab in patients with lymphoma or chronic lymphocytic leukemia. Blood. 2015;126(23):3928.
102.
O'Connor OA, Flinn IW, Patel MR, Fenske TS, Deng C, Brander DM, et al. TGR-1202, a novel once daily PI3K-delta inhibitor, demonstrates clinical activity with a favorable safety profile in patients with CLL and B-cell lymphoma. Blood. 2015;126(23):4154.
103.
Mahadevan D, Pauli EK, Cutter K, Dietz LA, Sportelli P, Miskin HP, et al. A phase I trial of TGR-1202, a next generation once daily PI3K-delta inhibitor in combination with obinutuzumab plus chlorambucil, in patients with chronic lymphocytic leukemia. Blood. 2015;126(23):2942.
104.
Coutre SE, Barrientos JC, Brown JR, de Vos S, Furman RR, Keating MJ, et al. Management of adverse events associated with idelalisib treatment: expert panel opinion. Leuk Lymphoma. 2015;56(10):2779–86.CrossRefPubMedPubMedCentral