Skip to main content

Overview of PARP Inhibitor Design and Optimization

  • Chapter
  • First Online:
PARP Inhibitors for Cancer Therapy

Part of the book series: Cancer Drug Discovery and Development ((CDD&D,volume 83))

  • 1873 Accesses

Abstract

Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear enzyme and the founding member of the PARP family of enzymes. Inhibition of PARP-1 has been the focus of drug discovery groups for over three decades in a wide range of therapeutic areas encompassing stroke, cardiac ischemia, inflammation, diabetes and most importantly cancer. Despite the great therapeutic potential for this target and over a decade of clinical studies, only recently have PARP inhibitors made headway in late stage clinical trials. After many tribulations, recent results from several PARP inhibitors in Phase II clinical trials for cancer therapy have reinvigorated the field. This chapter is structured to provide the readers with a brief summary of the rationale for PARP-1 as a therapeutic target for oncology and explain the genesis of the PARP inhibitor pharmacophore. In addition, this chapter will provide the optimization paradigms for each of the PARP inhibitors currently in clinical trials, analyzing some of the differentiating factors for the clinical compounds and a brief mention of the current clinical progress for each inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yelamos J, Schreiber V, Dantzer F (2008) Toward specific functions of poly(ADP-ribose) polymerase-2. Trends Mol Med 14:169

    Article  CAS  PubMed  Google Scholar 

  2. Langelier MF, Planck JL, Roy S, Pascal JM (2012) Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 336:728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Durkacz BW, Omidiji O, Gray DA, Shall S (1980) (ADP-ribose)n participates in DNA excision repair. Nature 283:593

    Article  CAS  PubMed  Google Scholar 

  4. De Vos M, Schreiber V, Dantzer F (2012) The diverse roles and clinical relevance of PARPs in DNA damage repair: current state of the art. Biochem Pharmacol 84:137

    Article  CAS  PubMed  Google Scholar 

  5. Ogata N, Ueda K, Kagamiyama H, Hayaishi O (1980,) ADP-ribosylation of histone H1. Identification of glutamic acid residues 2, 14, and the COOH-terminal lysine residue as modification sites. J Biol Chem 255:7616

    CAS  PubMed  Google Scholar 

  6. Caldecott KW (2003) XRCC1 and DNA strand break repair. DNA Repair 2:955

    Article  CAS  PubMed  Google Scholar 

  7. Audebert M, Salles B, Calsou P (2004) Involvement of poly(ADP-ribose) polymerase-1 and XRCC1/DNA ligase III in an alternative route for DNA double-strand breaks rejoining. J Biol Chem 279:55117

    Article  CAS  PubMed  Google Scholar 

  8. Schreiber V, Dantzer F, Ame JC, de Murcia G (2006) Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7:517

    Article  CAS  PubMed  Google Scholar 

  9. La Thangue NB, Kerr DJ (2011) Predictive biomarkers: a paradigm shift towards personalized cancer medicine. Nat Rev Clin Oncol 8:587

    Article  CAS  PubMed  Google Scholar 

  10. Murai J et al (2012) Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72:5588

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Clark JB, Ferris GM, Pinder S (1971) Inhibition of nuclear NAD nucleosidase and poly ADP-ribose polymerase activity from rat liver by nicotinamide and 5’-methyl nicotinamide. Biochim Biophys Acta 238:82

    Article  CAS  PubMed  Google Scholar 

  12. Purnell MR, Whish WJ (1980) Novel inhibitors of poly(ADP-ribose) synthetase. Biochem J 185:775

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Banasik M, Komura H, Shimoyama M, Ueda K (1992) Specific inhibitors of poly(ADP-ribose) synthetase and mono(ADP-ribosyl)transferase. J Biol Chem 267:1569

    CAS  PubMed  Google Scholar 

  14. Levi V, Jacobson EL, Jacobson MK (1978) Inhibition of poly(ADP-ribose) polymerase by methylated xanthines and cytokinins. FEBS Lett 88:144

    Article  CAS  PubMed  Google Scholar 

  15. Shall S (1975) Proceedings: experimental manipulation of the specific activity of poly(ADP-ribose) polymerase. J Biochem 77:2p

    Google Scholar 

  16. Suto MJ, Turner WR, Arundel-Suto CM, Werbel LM, Sebolt-Leopold JS (1991) Dihydroisoquinolinones: the design and synthesis of a new series of potent inhibitors of poly(ADP-ribose) polymerase. Anti-Cancer Drug Des 6:107

    CAS  Google Scholar 

  17. Ferraris D et al (2003) Design and synthesis of poly ADP-ribose polymerase-1 inhibitors. 2. Biological evaluation of aza-5[H]-phenanthridin-6-ones as potent, aqueous-soluble compounds for the treatment of ischemic injuries. J Med Chem 46:3138

    Article  CAS  PubMed  Google Scholar 

  18. Griffin RJ et al (1998) Resistance-modifying agents. 5. Synthesis and biological properties of quinazolinone inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP). J Med Chem 41:5247

    Article  CAS  PubMed  Google Scholar 

  19. Ferraris DV (2010) Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic. J Med Chem 53:4561

    Article  CAS  PubMed  Google Scholar 

  20. Griffin RJ et al (1995) Novel potent inhibitors of the DNA repair enzyme poly(ADP-ribose)polymerase (PARP). Anti-Cancer Drug Des 10:507

    CAS  Google Scholar 

  21. Ruf A, de Murcia G, Schulz GE (1998) Inhibitor and NAD+ binding to poly(ADP-ribose) polymerase as derived from crystal structures and homology modeling. Biochemistry 37:3893

    Article  CAS  PubMed  Google Scholar 

  22. Skalitzky DJ et al (2003) Tricyclic benzimidazoles as potent poly(ADP-ribose) polymerase-1 inhibitors. J Med Chem 46:210

    Article  CAS  PubMed  Google Scholar 

  23. Tao M et al (2006) Synthesis and structure-activity relationships of novel poly(ADP-ribose) polymerase-1 inhibitors. Bioorg Med Chem Lett 16:938

    Article  CAS  PubMed  Google Scholar 

  24. Zhang WT et al (2009) Design, synthesis, and cytoprotective effect of 2-aminothiazole analogues as potent poly(ADP-ribose) polymerase-1 inhibitors. J Med Chem 52:718

    Article  CAS  PubMed  Google Scholar 

  25. Gangloff AR et al (2013) Discovery of novel benzo[b][1,4]oxazin-3(4H)-ones as poly(ADP-ribose)polymerase inhibitors. Bioorg Med Chem Lett 23:4501

    Article  CAS  PubMed  Google Scholar 

  26. Ferrigno F et al (2010) Development of substituted 6-[4-fluoro-3-(piperazin-1-ylcarbonyl)benzyl]-4,5-dimethylpyridazin-3(2H)-ones as potent poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors active in BRCA deficient cells. Bioorg Med Chem Lett 20:1100

    Article  CAS  PubMed  Google Scholar 

  27. Wahlberg E et al (2012) Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 30:283

    Article  CAS  PubMed  Google Scholar 

  28. Bregman H et al (2013) Discovery of novel, induced-pocket binding oxazolidinones as potent, selective, and orally bioavailable tankyrase inhibitors. J Med Chem 56:4320

    Article  CAS  PubMed  Google Scholar 

  29. Shultz MD et al (2013) Structure-efficiency relationship of [1,2,4]triazol-3-ylamines as novel nicotinamide isosteres that inhibit tankyrases. J Med Chem 56:7049

    Article  CAS  PubMed  Google Scholar 

  30. White AW et al (2000) Resistance-modifying agents. 9. Synthesis and biological properties of benzimidazole inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase. J Med Chem 43:4084

    Article  CAS  PubMed  Google Scholar 

  31. Canan Koch SS et al (2002) Novel tricyclic poly(ADP-ribose) polymerase-1 inhibitors with potent anticancer chemopotentiating activity: design, synthesis, and X-ray cocrystal structure. J Med Chem 45:4961

    Article  PubMed  Google Scholar 

  32. White AW et al (2004) Potentiation of cytotoxic drug activity in human tumour cell lines, by amine-substituted 2-arylbenzimidazole-4-carboxamide PARP-1 inhibitors. Bioorg Med Chem Lett 14:2433

    Article  CAS  PubMed  Google Scholar 

  33. Tikhe JG et al (2004) Design, synthesis, and evaluation of 3,4-dihydro-2H-[1,4]diazepino[6,7,1-hi]indol-1-ones as inhibitors of poly(ADP-ribose) polymerase. J Med Chem 47:5467

    Article  CAS  PubMed  Google Scholar 

  34. Thomas HD et al (2007) Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther 6:945

    Article  CAS  PubMed  Google Scholar 

  35. Chuang HC, Kapuriya N, Kulp SK, Chen CS, Shapiro CL (2012) Differential anti-proliferative activities of poly(ADP-ribose) polymerase (PARP) inhibitors in triple-negative breast cancer cells. Breast Cancer Res Treat 134:649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Plummer R et al (2008) Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 14:7917

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sleijfer S, Bogaerts J, Siu LL (2013) Designing transformative clinical trials in the cancer genome era. J Clin Oncol 31:1834

    Article  PubMed  Google Scholar 

  38. Penning TD et al (2008) Discovery and SAR of 2-(1-propylpiperidin-4-yl)-1H-benzimidazole-4-carboxamide: a potent inhibitor of poly(ADP-ribose) polymerase (PARP) for the treatment of cancer. Bioorg Med Chem 16:6965

    Article  CAS  PubMed  Google Scholar 

  39. Penning TD et al (2009) Discovery of the Poly(ADP-ribose) polymerase (PARP) inhibitor 2-[(R)-2-methylpyrrolidin-2-yl]-1H-benzimidazole-4-carboxamide (ABT-888) for the treatment of cancer. J Med Chem 52:514

    Article  CAS  PubMed  Google Scholar 

  40. Donawho CK et al (2007) ABT-888, an orally active poly(ADP-ribose) polymerase inhibitor that potentiates DNA-damaging agents in preclinical tumor models. Clin Cancer Res 13:2728

    Article  CAS  PubMed  Google Scholar 

  41. Rugo HS et al (2013) In 36th Annual San Antonio Breast Cancer Symposium. (San Antonio, TX), vol. Abstract S5–02

    Google Scholar 

  42. Jones P et al (2009) Discovery of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide (MK-4827): a novel oral poly(ADP-ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and -2 mutant tumors. J Med Chem 52:7170

    Article  CAS  PubMed  Google Scholar 

  43. Sandhu SK et al (2013) The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol 14:882

    Article  CAS  PubMed  Google Scholar 

  44. Michie CO et al (2013) Final results of the phase I trial of niraparib (MK4827), a poly(ADP)ribose polymerase (PARP) inhibitor incorporating proof of concept biomarker studies and expansion cohorts involving BRCA1/2 mutation carriers, sporadic ovarian, and castration resistant prostate cancer (CRPC). J Clin Oncol 31:2513 (Meeting Abstracts)

    Article  Google Scholar 

  45. Menear KA et al (2008) 4-[3-(4-cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2H-phthalazin- 1-one: a novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. J Med Chem 51:6581

    Article  CAS  PubMed  Google Scholar 

  46. Cockcroft XL et al (2006) Phthalazinones 2: optimisation and synthesis of novel potent inhibitors of poly(ADP-ribose)polymerase. Bioorg Med Chem Lett 16:1040

    Article  CAS  PubMed  Google Scholar 

  47. Loh VM, Jr. et al (2005) Phthalazinones. Part 1: the design and synthesis of a novel series of potent inhibitors of poly(ADP-ribose)polymerase. Bioorganic Med Chem Lett 15:2235

    Article  CAS  Google Scholar 

  48. Fong PC et al (2009) Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. New Engl J Med 361:123

    Article  CAS  PubMed  Google Scholar 

  49. Khan OA et al (2011) A phase I study of the safety and tolerability of olaparib (AZD2281, KU0059436) and dacarbazine in patients with advanced solid tumours. Br J Cancer 104:750

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Audeh MW et al (2010) Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245

    Article  CAS  PubMed  Google Scholar 

  51. Edwards SL et al (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111

    Article  CAS  PubMed  Google Scholar 

  52. Jaspers JE et al (2013) Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov 3:68

    Article  CAS  PubMed  Google Scholar 

  53. Wang BSJ, (CA, US), Chu, Daniel (Santa Clara, CA, US), Liu, Yongbo (Shanghai, CN), Jiang, Quan (Shanghai, CN), Lu, Lei (Zhejiang Province, CN). (United States, 2011). The international patent publication number is WO 2011/097602 A1

    Google Scholar 

  54. Wang B et al (2011) In Proceedings of the AACR-NCI-EORTC International Conference, San Francisco, CA. (Mol Cancer Ther), vol 10 (11 Suppl) Abstract B64

    Google Scholar 

  55. Shen Y et al (2013) BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin Cancer Res 19:5003

    Article  CAS  PubMed  Google Scholar 

  56. Murai J et al (2014) Stereospecific PARP Trapping by BMN 673 and comparison with olaparib and rucaparib. Mol Cancer Ther 13(2):433–443

    Google Scholar 

  57. De Bono JS et al (2013) ASCO 31(suppl abstr 2580) (J Clin Oncol, 2013)

    Google Scholar 

  58. Zhang J (1999) PARP inhibition: a novel approach to treat ischemia/reperfusion and inflammation-related injuries. Exp Opin Emerg Drugs 4:209

    Article  CAS  Google Scholar 

  59. Zhang J et al (2000) GPI 6150 prevents H(2)O(2) cytotoxicity by inhibiting poly(ADP-ribose) polymerase. Biochem Biophys Res Commun 278:590

    Article  CAS  PubMed  Google Scholar 

  60. Mita AC et al (2011) In AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics. (Mol Cancer Ther, San Francisco, CA), vol 10 (11 Suppl) Abstract B185

    Google Scholar 

  61. McGonigle S et al (2012) In Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research. (Cancer Res, Chicago, IL), vol 72 (8 Suppl) Abstract 4688

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana Ferraris Ph.D., M.B.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferraris, D. (2015). Overview of PARP Inhibitor Design and Optimization. In: Curtin, N., Sharma, R. (eds) PARP Inhibitors for Cancer Therapy. Cancer Drug Discovery and Development, vol 83. Humana Press, Cham. https://doi.org/10.1007/978-3-319-14151-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-14151-0_7

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-14150-3

  • Online ISBN: 978-3-319-14151-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics