Skip to main content

Densitometry Techniques

  • Chapter
  • First Online:
Bone Densitometry in Clinical Practice

Part of the book series: Current Clinical Practice ((CCP))

Abstract

Clinical densitometry is relatively new but densitometry itself is actually quite old. It was first described over 100 years ago in the field of dental radiology as dentists attempted to quantify the bone density in the mandible(1,2). With today’s techniques bone density can be quantified in almost every region of the skeleton. The extraordinary technical advances in recent years have expanded the realm of densitometry from that of a quantitative technique to that of an imaging technique as well. But even the oldest techniques remain both viable and valuable with computer modernization. Densitometry technologies have evolved as our understanding of relevant disease processes has increased. In a complimentary fashion, our understanding of the disease processes has increased as the technologies have evolved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Correlation indicates the strength of the association between two values or variables. The correlation value is denoted with the letter “r.” A perfect correlation would be indicated by an r-value of +1.00 or −1.00.

  2. 2.

    Techniques are compared on the basis of accuracy and precision, which can be described using the percent coefficient of variation (%CV). The %CV is the standard deviation divided by the average of replicate measurements expressed as a percentage. The lower the %CV, the better the accuracy or precision. See Chapters 3 and 11 for a detailed discussion of precision and accuracy.

  3. 3.

    This technique is discussed later in this chapter.

  4. 4.

    Picture Archiving and Communications System.

  5. 5.

    See Chapter 3 for a discussion of the AUROC.

  6. 6.

    Ward’s triangle was first described by F.O. Ward in Outlines of Human Osteology, London; Henry Renshaw, 1838. It is a triangular region created by the intersection of three groups of trabeculae in the femoral neck.

  7. 7.

    See Chapter 2 for a discussion of the composition of the radius and ulna.

  8. 8.

    Global fracture risk refers to the risk of having any and all types of fractures combined. This is in contrast to a site-specific fracture risk prediction in which the risk for a fracture at a specific skeletal site is given, such as spine fracture risk or hip fracture risk.

  9. 9.

    A central device is a bone densitometer that can be used to quantify bone density in the spine and proximal femur. The distinction between central and peripheral devices is discussed in Chapter 2.

  10. 10.

    Although spine bone density studies with dual-energy X-ray absorptiometry are often referred to as AP spine studies, the beam actually passes in a posterior to anterior direction. Such studies are correctly characterized as PA spine studies, but an accepted convention is to refer to them as AP spine bone density studies. The Lunar Expert, a fan-array DXA scanner, does acquire spine bone density studies in the AP projection.

  11. 11.

    See Chapter 6 for a detailed discussion of the difference in values obtained using central devices from different manufacturers, conversions equations, and the development of the sBMD.

  12. 12.

    See Chapter 15for a listing of radiation dose according to device and scan type.

  13. 13.

    Specific descriptions and photographs of these scanners can be found in Chapter 15.

  14. 14.

    This application is discussed in detail in Chapter 13.

  15. 15.

    This application on newer GE Healthcare devices is now called DVA (Dual-energy vertebral assessment). An image of the spine in the PA projection can be obtained in addition to the lateral view with DVA.

  16. 16.

    A new version of this application is called high-definition instant vertebral assessment or IVA-HD and is available as a standard or optional application, depending on the model of Hologic DXA device.

  17. 17.

    See Chapter 11 for a detailed discussion on the interaction between precision and rate of change in determining the time interval required between measurements to demonstrate significant change.

  18. 18.

    See Chapter 11 for a discussion of short-term precision.

  19. 19.

    OFELY is a prospective study of the determinants of bone loss, involving over 1000 women aged 31–89 years from France.

References

  1. Dennis J. A new system of measurement in X-ray work. Dental Cosmos 1897;39:445–454.

    Google Scholar 

  2. Price WA. The science of dental radiology. Dental Cosmos 1901;43:483–503.

    Google Scholar 

  3. Johnston CC, Epstein S. Clinical, biochemical, radiographic, epidemiologic, and economic features of osteoporosis. Orthop Clin North Am 1981;12:559–569.

    PubMed  Google Scholar 

  4. Aitken M. Measurement of bone mass and turnover. Osteoporosis in clinical practice. Bristol: John Wright & Sons Ltd, 1984:19–20.

    Google Scholar 

  5. Singh J, Nagrath AR, Maini PS. Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis. J Bone Joint Surg Am 1970;52-A:457–467.

    Google Scholar 

  6. Bohr H, Schadt O. Bone mineral content of femoral bone and lumbar spine measured in women with fracture of the femoral neck by dual photon absorptiometry. Clin Ortho 1983;179:240–245.

    Article  Google Scholar 

  7. Nordin BEC. Osteoporosis with particular reference to the menopause. In: Avioli LV, ed. The osteoporotic syndrome. New York: Grune & Stratton, 1983:13–44.

    Google Scholar 

  8. Shimmins J, Anderson JB, Smith DA, et al. The accuracy and reproducibility of bone mineral measurements “in vivo.” (a) The measurement of metacarpal mineralisation using an X-ray generator. Clin Radiol 1972;23:42–46.

    Article  PubMed  CAS  Google Scholar 

  9. Exton-Smith AN, Millard PH, Payne PR, Wheeler EF. Method for measuring quantify of bone. Lancet 1969;2: 1153–1154.

    Article  PubMed  CAS  Google Scholar 

  10. Dequeker J. Precision of the radiogrammetric evaluation of bone mass at the metacarpal bones. In: Dequeker J, Johnston CC, eds. Non-invasive bone measurements: methodological problems. Oxford: IRL Press, 1982, 27–32.

    Google Scholar 

  11. Aitken JM, Smith CB, Horton PW, et al. The inter-relationships between bone mineral at different skeletal sites in male and female cadavera. J Bone Joint Surg Br 1974;56B:370–375.

    Google Scholar 

  12. Meema HE, Meindok H. Advantages of peripheral radiogrammetry over dual-photon absorptiometry of the spine in the assessment of prevalence of osteoporotic vertebral fractures in women. J Bone Miner Res 1992;7:897–903.

    Article  PubMed  CAS  Google Scholar 

  13. Bywaters EGL. The measurement of bone opacity. Clin Sci 1948;6:281–287.

    PubMed  CAS  Google Scholar 

  14. Barnett E, Nordin BEC. Radiologic assessment of bone density. 1.-The clinical and radiological problem of thin bones. Br J Radiol 1961;34:683–692.

    Article  PubMed  CAS  Google Scholar 

  15. Bouxsein ML, Palermo L, Yeung C, Black DM. Digital X-ray radiogrammetry predicts hip, wrist and vertebral fracture risk in elderly women: a prospective analysis from the Study of Osteoporotic Fractures. Osteoporos Int 2002;12:358–365.

    Article  Google Scholar 

  16. Cummings S, Black D, Nevitt M, et al. Appendicular bone density and age predict hip fractures in women. JAMA 1990;263:665–668.

    Article  PubMed  CAS  Google Scholar 

  17. Pothuaud L, Lespessailles E, Harba R, et al. Fractal analysis of trabecular bone texture on radiographs: discriminant value in postmenopausal osteoporosis. Osteoporos Int 1998;(6):618–25.

    Google Scholar 

  18. Benhamou CL, Poupon S, Lespessailles E, Loiseau S, Jennane R, Siroux V, et al. Fractal analysis of radiographic trabecular bone texture and bone mineral density: two complementary parameters related to osteoporotic fractures. J Bone Miner Res 2001:16(4)697–704.

    Article  PubMed  CAS  Google Scholar 

  19. Gregory JS, Stewart A, Undrill PE, Reid DM, Aspden RM. Identification of hip fracture patients from radiographs using Fourier analysis of the trabecular structure: a cross-sectional study. BMC Med Imaging 2004;4(1):4.

    Article  PubMed  Google Scholar 

  20. Chappard C, Brunet-Imbault B, Lemineur G, et al. Anisotropy changes in post-menopausal osteoporosis: characterization by a new index applied to trabecular bone radiographic images. Osteoporos Int 2005:16(10)1193–202.

    Article  PubMed  Google Scholar 

  21. Brunet-Imbault B, Lemineur G, Chappard C, Harba R, Benhamou CL. A new anisotropy index on trabecular bone radiographic images using the fast Fourier transform. BMC Med Imaging 2005 May 31;5:4.

    Article  Google Scholar 

  22. van der Linden JC, Weinans H. Effects of microarchitecture on bone strength. Curr Osteoporos Rep 2007:5(2)56–61.

    Article  PubMed  Google Scholar 

  23. Mack PB, Brown WN, Trapp HD. The quantitative evaluation of bone density. Am J Roentgenol Rad Ther 1949;61:808–825.

    CAS  Google Scholar 

  24. Vose GP, Mack PB. Roentgenologic assessment of femoral neck density as related to fracturing. Am J Roentgenol Rad Ther Nucl Med 1963;89:1296–1301.

    CAS  Google Scholar 

  25. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet 1993;341:72–75.

    Article  PubMed  CAS  Google Scholar 

  26. Mazess RB. Noninvasive methods for quantitating trabecular bone. In: Avioli LV, ed. The osteoporotic syndrome. New York: Grune & Stratton, 1983:85–114.

    Google Scholar 

  27. Mack PB, O’Brien AT, Smith JM, Bauman AW. A method for estimating degree of mineralization of bones from tracings of roentgenograms. Science 1939;89:467.

    Article  PubMed  CAS  Google Scholar 

  28. Mack PB, Vogt FB. Roentgenographic bone density changes in astronauts during representative Apollo space flight. Am J Roentgenol Rad Ther Nucl Med 1971;113:621–633.

    CAS  Google Scholar 

  29. Cosman F, Herrington B, Himmelstein S, Lindsay R. Radiographic absorptiometry: a simple method for determination of bone mass. Osteoporos Int 1991;2:34–38.

    Article  PubMed  CAS  Google Scholar 

  30. Yates AJ, Ross PD, Lydick E, Epstein RS. Radiographic absorptiometry in the diagnosis of osteoporosis. Am J Med 1995;98:41S–47S.

    Article  PubMed  CAS  Google Scholar 

  31. Yang S, Hagiwara S, Engelke K, et al. Radiographic absorptiometry for bone mineral measurement of the phalanges: precision and accuracy study. Radiology 1994;192:857–859.

    PubMed  CAS  Google Scholar 

  32. Kleerekoper M, Nelson DA, Flynn MJ, Pawluszka AS, Jacobsen G, Peterson EL. Comparison of radiographic absorptiometry with dual-energy X-ray absorptiometry and quantitative computed tomography in normal older white and black women. J Bone Miner Res 1994;9:1745–1749.

    Article  PubMed  CAS  Google Scholar 

  33. Mussolino ME, Looker AC, Madans JH, et al. Phalangeal bone density and hip fracture risk. Arch Intern Med 1997;157:433–438.

    Article  PubMed  CAS  Google Scholar 

  34. Huang C, Ross PD, Yates AJ, et al. Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 1998;6:380–384.

    Article  Google Scholar 

  35. Cameron JR, Sorenson G. Measurements of bone mineral in vivo: an improved method. Science 1963;142:230–232.

    Article  PubMed  CAS  Google Scholar 

  36. Vogel JM. Application principles and technical considerations in SPA. In: Genant HK, ed. Osteoporosis update 1987. San Francisco: University of California Printing Services, 1987:219–231.

    Google Scholar 

  37. Johnston CC. Noninvasive methods for quantitating appendicular bone mass. In: Avioli L, ed. The osteoporotic syndrome. New York: Grune & Stratton, 1983:73–84.

    Google Scholar 

  38. Barden HS, Mazess RB. Bone densitometry of the appendicular and axial skeleton. Top Geriatric Rehabi. 1989;4:1–12.

    Google Scholar 

  39. Kimmel PL. Radiologic methods to evaluate bone mineral content. Ann Intern Med 1984;100:908–911.

    Google Scholar 

  40. Steiger P, Genant HK. The current implementation of single-photon absorptiometry in commercially available instruments. In: Genant HK, ed. Osteoporosis update 1987. San Francisco: University of California Printing Services, 1987:233–240.

    Google Scholar 

  41. Chesnut CH. Noninvasive methods for bone mass measurement. In: Avioli L, ed. The Osteoporotic syndrome. 3rd ed. New York: Wiley-Liss, 1993:77–87.

    Google Scholar 

  42. Gardsell P, Johnell, O, Nilsson BE. The predictive value of bone loss for fragility fractures in women: a longitudinal study over 15 years. Calcif Tissue Int 1991;49:90–94.

    Article  PubMed  CAS  Google Scholar 

  43. Hui SL, Slemenda CW, Johnston CC. Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med 1989;111:355–361.

    PubMed  CAS  Google Scholar 

  44. Ross PD, Davis JW, Vogel JM, Wasnich RD. A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 1990;46:149–161.

    Article  PubMed  CAS  Google Scholar 

  45. Melton LJ, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL. Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 1993;8:1227–1233.

    Article  PubMed  Google Scholar 

  46. Black DM, Cummings SR, Genant HK, Nevitt MC, Palermo L, Browner W. Axial and appendicular bone density predict fracture in older women. J Bone Miner Res 1992;7:633–638.

    Article  PubMed  CAS  Google Scholar 

  47. Nord RH. Technical considerations in DPA. In: Genant HK., ed. Osteoporosis update 1987. San Francisco: University of California Printing Services, 1987:203–212.

    Google Scholar 

  48. Dunn WL, Wahner HW, Riggs BL. Measurement of bone mineral content in human vertebrae and hip by dual photon absorptiometry. Radiology 1980;136:485–487.

    PubMed  CAS  Google Scholar 

  49. Reed GW. The assessment of bone mineralization from the relative transmission of 241Am and 137Cs radiations. Phys Med Biol 1966;11:174.

    Google Scholar 

  50. Roos B, Skoldborn H. Dual photon absorptiometry in lumbar vertebrae. I. Theory and method. Acta Radiol Ther Phys Biol 1974;13:266–290.

    PubMed  CAS  Google Scholar 

  51. Mazess RB, Ort M, Judy P. Absorptiometric bone mineral determination using 153Gd. In: Cameron JR, ed. Proceedings of bone measurements conference. U.S. Atomic Energy Commission, 1970:308–312.

    Google Scholar 

  52. Wilson CR, Madsen M. Dichromatic absorptiometry of vertebral bone mineral content. Invest Radiol 1977;12:180–184.

    Article  PubMed  CAS  Google Scholar 

  53. Madsen M, Peppler W, Mazess RB. Vertebral and total body bone mineral content by dual-photon absorptiometry. Calcif Tissue Res 1976;2:361–364.

    Google Scholar 

  54. Wahner WH, Dunn WL, Mazess RB, et al. Dual-photon Gd-153 absorptiometry of bone. Radiology 1985;156:203–206.

    PubMed  CAS  Google Scholar 

  55. Lindsay R, Fey C, Haboubi A. Dual-photon absorptiometric measurements of bone mineral density increase with source life. Calcif Tissue Int 1987;41:293–294.

    Article  PubMed  CAS  Google Scholar 

  56. Cummings SR, Black DB. Should perimenopausal women be screened for osteoporosis? Ann Intern Med 1986;104:817–823.

    PubMed  CAS  Google Scholar 

  57. Drinka PJ, DeSmet AA, Bauwens SF, Rogot A. The effect of overlying calcification on lumbar bone densitometry. Calcif Tissue Int 1992;50:507–510.

    Article  PubMed  CAS  Google Scholar 

  58. Curry TS, Dowdey JE, Murry RC. Christensen’s physics of diagnostic radiology. Philadelphia: Lea & Febiger, 1990, 1–522.

    Google Scholar 

  59. Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N. Lateral dual-energy radiography: artifact error from rib and pelvic bone. J Bone Miner Res 1992;7:97–101.

    Article  PubMed  CAS  Google Scholar 

  60. Louis O, Van Den Winkel P, Covens P, Schoutens A, Osteaux M. Dual-energy X-ray absorptiometry of lumbar vertebrae: relative contribution of body and posterior elements and accuracy in relation with neutron activation analysis. Bone 1992;13:317–320.

    Article  PubMed  CAS  Google Scholar 

  61. Peel NFA, Johnson A, Barrington NA, Smith TWD, Eastell R. Impact of anomalous vertebral segmentation of measurements of bone mineral density. J Bone Miner Res 1993;8:719–723.

    Article  PubMed  CAS  Google Scholar 

  62. Lees B, Stevenson JC. An evaluation of dual-energy X-ray absorptiometry and comparison with dual-photon absorptiometry. Osteoporos Int. 1992;2:146–152.

    Article  PubMed  CAS  Google Scholar 

  63. Kelly TL, Slovik DM, Schoenfeld DA, Neer RM. Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 1988;76:839–844.

    Article  Google Scholar 

  64. Holbrook TL, Barrett-Connor E, Klauber M, Sartoris D. A population-based comparison of quantitative dual-energy X-ray absorptiometry with dual-photon absorptiometry of the spine and hip. Calcif Tissue Int 1991;49:305–307.

    Article  PubMed  CAS  Google Scholar 

  65. Pouilles JM, Tremollieres F, Todorovsky N, Ribot C. Precision and sensitivity of dual-energy X-ray absorptiometry in spinal osteoporosis. J Bone Miner Res 1991;6:997–1002.

    Article  PubMed  CAS  Google Scholar 

  66. Laskey MA, Cirsp AJ, Cole TJ, Compston JE. Comparison of the effect of different reference data on Lunar DPX and Hologic QDR-1000 dual-energy X-ray absorptiometers. Br J Radiol 1992;65:1124–1129.

    Article  PubMed  CAS  Google Scholar 

  67. Pocock NA, Sambrook PN, Nguyen T, Kelly P, Freund J, Eisman J. Assessment of spinal and femoral bone density by dual X-ray absorptiometry: comparison of Lunar and Hologic instruments. J Bone Miner Res 1992;7:1081–1084.

    Article  PubMed  CAS  Google Scholar 

  68. Lai KC, Goodsitt MM, Murano R, Chesnut CC. A comparison of two dual-energy X-ray absorptiometry systems for spinal bone mineral measurement. Calcif Tissue Int 1992;50:203–208.

    Article  PubMed  CAS  Google Scholar 

  69. Genant HK, Grampp S, Gluer CC, et al. Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 1994;9:1503–1514.

    Article  PubMed  CAS  Google Scholar 

  70. Hanson J. Standardization of femur BMD. J Bone Miner Res 1997;12:1316–1317.

    Article  PubMed  CAS  Google Scholar 

  71. Kalender WA. Effective dose values in bone mineral measurements by photon-absorptiometry and computed tomography. Osteoporos Int 1992;2:82–87.

    Article  PubMed  CAS  Google Scholar 

  72. Kelly TL, Crane G, Baran DT. Single x-ray absorptiometry of the forearm: precision, correlation, and reference data. Calcif Tissue Int 1994;54:212–218.

    Article  PubMed  CAS  Google Scholar 

  73. Ruegsegger P, Elsasser U, Anliker M, Gnehn H, Kind H, Prader A. Quantification of bone mineralisation using computed tomography. Radiology 1976;121:93–97.

    PubMed  CAS  Google Scholar 

  74. Genant HK, Cann CE, Ettinger B, Gorday GS. Quantitative computed tomography of vertebral spongiosa: a sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 1982;97:699–705.

    PubMed  CAS  Google Scholar 

  75. Cann CE, Genant HK. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr 1980;4:493–500.

    Article  PubMed  CAS  Google Scholar 

  76. Genant HK, Block JE, Steiger P, Gluer C. Quantitative computed tomography in the assessment of osteoporosis. In: Genant HK, ed. Osteoporosis update 1987. San Francisco: University of California Printing Services, 1987:49–72.

    Google Scholar 

  77. Laval-Jeantet AM, Roger B, Bouysse S, Bergot C, Mazess RB. Influence of vertebral fat content on quantitative CT density. Radiology 1986;159:463–466.

    PubMed  CAS  Google Scholar 

  78. Reinbold W, Adler CP, Kalender WA, Lente R. Accuracy of vertebral mineral determination by dual-energy quantitative computed tomography. Skeletal Radiol 1991;20:25–29.

    Article  PubMed  CAS  Google Scholar 

  79. Dunnill MS, Anderson JA, Whitehead R. Quantitative histological studies on age changes in bone. J Pathol Bacteriol 1967;94:274–291.

    Article  Google Scholar 

  80. Genant HK, Boyd D, Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 1977;12:545–551.

    Article  PubMed  CAS  Google Scholar 

  81. Cann CE. Quantitative computed tomography for bone mineral analysis: technical considerations. In: Genant HK, ed. Osteoporosis update 1987. San Francisco: University of California Printing Services, 1987:131–144.

    Google Scholar 

  82. Sartoris DJ, Andre M, Resnick C, Resnick D. Trabecular bone density in the proximal femur: quantitative CT assessment. Radiology 1986;160:707–712.

    PubMed  CAS  Google Scholar 

  83. Reiser UJ, Genant HK. Determination of bone mineral content in the femoral neck by quantitative computed tomography. 70th Scientific Assembly and Annual Meeting of the Radiological Society of North America, Washington, DC, 1984.

    Google Scholar 

  84. Gallagher C, Golgar D, Mahoney P, McGill J. Measurement of spine density in normal and osteoporotic subjects using computed tomography: relationship of spine density to fracture threshold and fracture index. J Comput Assist Tomogr 1985;9:634–635.

    Article  Google Scholar 

  85. Raymaker JA, Hoekstra O, Van Putten J, Kerkhoff H, Duursma SA. Osteoporosis fracture prevalence and bone mineral mass measured with CT and DPA. Skeletal Radiol 1986;15:191–197.

    Article  Google Scholar 

  86. Reinbold WD, Reiser UJ, Harris ST, Ettinger B, Genant HK. Measurement of bone mineral content in early postmenopausal and postmenopausal osteoporotic women. A comparison of methods.Radiology 1986;160:469–478.

    CAS  Google Scholar 

  87. Sambrook PN, Bartlett C, Evans R, Hesp R, Katz D, Reeve J. Measurement of lumbar spine bone mineral: a comparison of dual photon absorptiometry and computed tomography. Br J Radiol 1985;58:621–624.

    Article  PubMed  CAS  Google Scholar 

  88. Genant HK, Ettinger B, Harris ST, Block JE, Steiger P. Quantitative computed tomography in assessment of osteoporosis. In: Riggs BL, Melton LJ, eds. Osteoporosis: etiology, diagnosis and management. New York: Raven Press, 1988, 221–249.

    Google Scholar 

  89. Richardson ML, Genant HK, Cann CE, et al. Assessment of metabolic bone disease by quantitative computed tomography. Clin Orth Rel Res 1985;195:224–238.

    Google Scholar 

  90. Laib A, Ruegsegger P. Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-micron-resolution microcomputed tomography. Bone 1999:24(1)35–9.

    Article  PubMed  CAS  Google Scholar 

  91. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005:90(12)6508–6515.

    Article  PubMed  CAS  Google Scholar 

  92. Sornay-Rendu E, Boutroy, S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 2007;22:425–433.

    Article  PubMed  Google Scholar 

  93. Gluer C, Wu C, Jergas M, Goldstein S, Genant H. Three quantitative ultrasound parameters reflect bone structure. Calcif Tissue Int 1994;55:46–52.

    Article  PubMed  CAS  Google Scholar 

  94. Nicholson P, Haddaway M, Davie M. The dependence of ultrasonic properties on orientation in human vertebral bone. Phys Med Biol 1994;39:1013–1024.

    Article  PubMed  CAS  Google Scholar 

  95. Njeh CF, Boivin CM, Langton CM. The role of ultrasound in the assessment of osteoporosis: a review. Osteoporos Int 1997;7:7–22.

    Article  PubMed  CAS  Google Scholar 

  96. Hans D, Dargent-Molina P, Schott AM, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 1996;348:511–514.

    Article  PubMed  CAS  Google Scholar 

  97. Bauer DC, Gluer CC, Cauley JA, et al. Bone ultrasound predicts fractures strongly and independently of densitometry in older women: a prospective study. Arch Intern Med 1997;157:629–634.

    Article  PubMed  CAS  Google Scholar 

  98. Njeh CF, Hans D, Li J, et al. Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int 2000;11:1051–1062.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sydney Lou Bonnick MD, FACP .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonnick, S.L. (2010). Densitometry Techniques. In: Bone Densitometry in Clinical Practice. Current Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-499-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-499-9_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-498-2

  • Online ISBN: 978-1-60327-499-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics