Skip to main content

Development, Homeostasis, and Heterogeneity of NK Cells and ILC1

  • Chapter
  • First Online:
Natural Killer Cells

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 395))

Abstract

Natural killer (NK) cells are a population of cytotoxic innate lymphocytes that evolved prior to their adaptive counterparts and constitute one of the first lines of defense against infected or mutated cells. NK cells are rapidly activated, expressing an array of germ-line encoded receptors that allow them to scan for protein irregularities on cells and kill those deemed “altered-self.” NK cells rapidly produce a broad range of cytokines and chemokines following activation by virus, bacterial, or parasitic infection and are thus key in orchestrating inflammation. NK cells have previously been viewed to represent a relatively homogeneous group of IFN-γ-producing cells that express the surface markers NK1.1 and natural killer cell p46-related protein (NKp46 or NCR1 encoded by Ncr1) and depend on the transcription factor T-bet for their development. Recently, a second subset of T-bet-dependent innate cells, the group 1 innate lymphoid cells (ILC1), has been discovered which share many attributes of conventional NK (cNK) cells. Despite the similarities between ILC1 and cNK cells , they differ in several important aspects including their localization, transcriptional regulation, and phenotype suggesting each subset has distinct origins and functions in immune responses. Previously, the ability to detect and spontaneously kill cells that exhibit “altered-self” which is central to tumor and viral immunity has been thought to be an attribute restricted solely to cNK cells. The identification of ILC1 challenges this notion and suggests that key contributions from ILC1 may have gone unrecognized. Thus, understanding the different rules that govern the behavior of ILC1 and cNK cells in immune responses may potentially open unexpected doorways to uncover novel strategies to manipulate these cells in treating disease. Here, we review recent advances in our understanding of peripheral cNK cell and ILC1 heterogeneity in terms of their development, phenotype, homeostasis, and effector functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

αLP:

α4β7+ lymphoid progenitor(s)

CLP:

Common lymphoid progenitor(s)

CHILP:

Common helper innate lymphoid progenitor

cNK cell:

Conventional NK cell

IFN:

Interferon

ILC:

Innate lymphoid cell

IL:

Interleukin

ILCp:

ILC progenitor

iNK cell:

Immature NK cell

LTi:

Lymphoid tissue inducer

mNK cell:

Mature NK cell

Ncr:

Natural cytotoxicity triggering receptor

NK cell:

Natural killer cell

RAG:

Recombinase activating gene

Ror:

Retinoic acid receptor-related orphan receptor gamma

References

  • Aliahmad P, De La Torre B, Kaye J (2010) Shared dependence on the DNA-binding factor TOX for the development of lymphoid tissue-inducer cell and NK cell lineages. Nat Immunol 11:945–952

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Anumanthan A, Bensussan A, Boumsell L, Christ AD, Blumberg RS, Voss SD, Patel AT, Robertson MJ, Nadler LM, Freeman GJ (1998) Cloning of BY55, a novel Ig superfamily member expressed on NK cells, CTL, and intestinal intraepithelial lymphocytes. J Immunol 161:2780–2790

    PubMed  CAS  Google Scholar 

  • Barton K, Muthusamy N, Fischer C, Ting CN, Walunas TL, Lanier LL, Leiden JM (1998) The Ets-1 transcription factor is required for the development of natural killer cells in mice. Immunity 9:555–563

    Article  PubMed  CAS  Google Scholar 

  • Boos MD, Yokota Y, Eberl G, Kee BL (2007) Mature natural killer cell and lymphoid tissue-inducing cell development requires Id2-mediated suppression of E protein activity. J Exp Med 204:1119–1130

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Campisi L, Soudja SM, Cazareth J, Bassand D, Lazzari A, Brau F, Narni-Mancinelli E, Glaichenhaus N, Geissmann F, Lauvau G (2011) Splenic CD8alpha(+) dendritic cells undergo rapid programming by cytosolic bacteria and inflammation to induce protective CD8(+) T-cell memory. Eur J Immunol 41:1594–1605

    Article  PubMed  CAS  Google Scholar 

  • Carotta S, Pang SH, Nutt SL, Belz GT (2011) Identification of the earliest NK-cell precursor in the mouse BM. Blood 117:5449–5452

    Article  PubMed  CAS  Google Scholar 

  • Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T (2009) Maturation of mouse NK cells is a 4-stage developmental program. Blood 113:5488–5496

    Article  PubMed  CAS  Google Scholar 

  • Constantinides MG, McDonald BD, Verhoef PA, Bendelac A (2014) A committed precursor to innate lymphoid cells. Nature 508:397–401

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Cortez VS, Fuchs A, Cella M, Gilfillan S, Colonna M (2014) Cutting edge: salivary gland NK cells develop independently of Nfil3 in steady-state. J Immunol 192:4487–4491

    Article  PubMed  CAS  Google Scholar 

  • Crotta S, Gkioka A, Male V, Duarte JH, Davidson S, Nisoli I, Brady HJ, Wack A (2014) The transcription factor E4BP4 is not required for extramedullary pathways of NK cell development. J Immunol 192:2677–2688

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Daussy C, Faure F, Mayol K, Viel S, Gasteiger G, Charrier E, Bienvenu J, Henry T, Debien E, Hasan UA et al (2014) T-bet and Eomes instruct the development of two distinct natural killer cell lineages in the liver and in the bone marrow. J Exp Med 211:563–577

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Deng Y, Kerdiles Y, Chu J, Yuan S, Wang Y, Chen X, Mao H, Zhang L, Zhang J, Hughes T et al (2015) Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function. Immunity 42:457–470

    Article  PubMed  CAS  Google Scholar 

  • Fallarino F, Asselin-Paturel C, Vacca C, Bianchi R, Gizzi S, Fioretti MC, Trinchieri G, Grohmann U, Puccetti P (2004) Murine plasmacytoid dendritic cells initiate the immunosuppressive pathway of tryptophan catabolism in response to CD200 receptor engagement. J Immunol 173:3748–3754

    Article  PubMed  CAS  Google Scholar 

  • Fathman JW, Bhattacharya D, Inlay MA, Seita J, Karsunky H, Weissman IL (2011) Identification of the earliest natural killer cell-committed progenitor in murine bone marrow. Blood 118:5439–5447

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Firth MA, Madera S, Beaulieu AM, Gasteiger G, Castillo EF, Schluns KS, Kubo M, Rothman PB, Vivier E, Sun JC (2013) Nfil3-independent lineage maintenance and antiviral response of natural killer cells. J Exp Med 210:2981–2990

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M, Colonna M (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38:769–781

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gascoyne DM, Long E, Veiga-Fernandes H, de Boer J, Williams O, Seddon B, Coles M, Kioussis D, Brady HJ (2009) The basic leucine zipper transcription factor E4BP4 is essential for natural killer cell development. Nat Immunol 10:1118–1124

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger G, Hemmers S, Bos PD, Sun JC, Rudensky AY (2013a) IL-2-dependent adaptive control of NK cell homeostasis. J Exp Med 210:1179–1187

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gasteiger G, Hemmers S, Firth MA, Le Floc’h A, Huse M, Sun JC, Rudensky AY (2013b) IL-2-dependent tuning of NK cell sensitivity for target cells is controlled by regulatory T cells. J Exp Med 210:1167–1178

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Gordon SM, Chaix J, Rupp LJ, Wu J, Madera S, Sun JC, Lindsten T, Reiner SL (2012) The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 36:55–67

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hayakawa Y, Smyth MJ (2006) CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176:1517–1524

    Article  PubMed  CAS  Google Scholar 

  • Herberman RB, Nunn ME, Holden HT, Lavrin DH (1975a) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer (Journal international du cancer) 16:230–239

    Article  CAS  Google Scholar 

  • Herberman RB, Nunn ME, Lavrin DH (1975b) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer (Journal international du cancer) 16:216–229

    Article  CAS  Google Scholar 

  • Holmes ML, Huntington ND, Thong RP, Brady J, Hayakawa Y, Andoniou CE, Fleming P, Shi W, Smyth GK, Degli-Esposti MA et al (2014) Peripheral natural killer cell maturation depends on the transcription factor Aiolos. EMBO J 33:2721–2734

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37:634–648

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang CT, Workman CJ, Flies D, Pan X, Marson AL, Zhou G, Hipkiss EL, Ravi S, Kowalski J, Levitsky HI et al (2004) Role of LAG-3 in regulatory T cells. Immunity 21:503–513

    Article  PubMed  CAS  Google Scholar 

  • Huntington ND (2014) The unconventional expression of IL-15 and its role in NK cell homeostasis. Immunol Cell Biol 92:210–213

    Article  PubMed  CAS  Google Scholar 

  • Huntington ND, Puthalakath H, Gunn P, Naik E, Michalak EM, Smyth MJ, Tabarias H, Degli-Esposti MA, Dewson G, Willis SN et al (2007a) Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 8:856–863

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huntington ND, Tabarias H, Fairfax K, Brady J, Hayakawa Y, Degli-Esposti MA, Smyth MJ, Tarlinton DM, Nutt SL (2007b) NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation. J Immunol 178:4764–4770

    Article  PubMed  CAS  Google Scholar 

  • Huntington ND, Vosshenrich CA, Di Santo JP (2007c) Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7:703–714

    Article  PubMed  CAS  Google Scholar 

  • Huntington ND, Xu Y, Nutt SL, Tarlinton DM (2005) A requirement for CD45 distinguishes Ly49D-mediated cytokine and chemokine production from killing in primary natural killer cells. J Exp Med 201:1421–1433

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huntington ND, Xu Y, Puthalakath H, Light A, Willis SN, Strasser A, Tarlinton DM (2006) CD45 links the B cell receptor with cell survival and is required for the persistence of germinal centers. Nat Immunol 7:190–198

    Article  PubMed  CAS  Google Scholar 

  • Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G, Griffiths E, Krawczyk C, Richardson CD, Aitken K et al (2001) CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 409:349–354

    Article  PubMed  CAS  Google Scholar 

  • Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ, Pereira JP, Xu Y, Roots CM, Beilke JN, Banerjee A et al (2009) T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J Exp Med 206:2469–2481

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kallies A, Carotta S, Huntington ND, Bernard NJ, Tarlinton DM, Smyth MJ, Nutt SL (2011) A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood 117:1869–1879

    Article  PubMed  CAS  Google Scholar 

  • Kamimura Y, Lanier LL (2015) Homeostatic control of memory cell progenitors in the natural killer cell lineage. Cell Rep 10:280–291

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kamizono S, Duncan GS, Seidel MG, Morimoto A, Hamada K, Grosveld G, Akashi K, Lind EF, Haight JP, Ohashi PS et al (2009) Nfil3/E4bp4 is required for the development and maturation of NK cells in vivo. J Exp Med 206:2977–2986

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Karo JM, Schatz DG, Sun JC (2014) The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell 159:94–107

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CR et al (2000) Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 191:771–780

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kiessling R, Klein E, Pross H, Wigzell H (1975a) “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5:117–121

    Article  PubMed  CAS  Google Scholar 

  • Kiessling R, Klein E, Wigzell H (1975b) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Iizuka K, Kang HS, Dokun A, French AR, Greco S, Yokoyama WM (2002) In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 3:523–528

    Article  PubMed  CAS  Google Scholar 

  • Klose CS, Flach M, Mohle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D et al (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157:340–356

    Article  PubMed  CAS  Google Scholar 

  • Kovalovsky D, Uche OU, Eladad S, Hobbs RM, Yi W, Alonzo E, Chua K, Eidson M, Kim HJ, Im JS et al (2008) The BTB-zinc finger transcriptional regulator PLZF controls the development of invariant natural killer T cell effector functions. Nat Immunol 9:1055–1064

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lacorazza HD, Miyazaki Y, Di Cristofano A, Deblasio A, Hedvat C, Zhang J, Cordon-Cardo C, Mao S, Pandolfi PP, Nimer SD (2002) The ETS protein MEF plays a critical role in perforin gene expression and the development of natural killer and NK-T cells. Immunity 17:437–449

    Article  PubMed  CAS  Google Scholar 

  • Laouar Y, Sutterwala FS, Gorelik L, Flavell RA (2005) Transforming growth factor-beta controls T helper type 1 cell development through regulation of natural killer cell interferon-gamma. Nat Immunol 6:600–607

    Article  PubMed  CAS  Google Scholar 

  • Lazarevic V, Glimcher LH (2011) T-bet in disease. Nat Immunol 12:597–606

    Article  PubMed  CAS  Google Scholar 

  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24:99–146

    Article  PubMed  CAS  Google Scholar 

  • Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S, Ma A (1998) IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9:669–676

    Article  PubMed  CAS  Google Scholar 

  • Lohoff M, Duncan GS, Ferrick D, Mittrucker HW, Bischof S, Prechtl S, Rollinghoff M, Schmitt E, Pahl A, Mak TW (2000) Deficiency in the transcription factor interferon regulatory factor (IRF)-2 leads to severely compromised development of natural killer and T helper type 1 cells. J Exp Med 192:325–336

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Male V, Nisoli I, Kostrzewski T, Allan DS, Carlyle JR, Lord GM, Wack A, Brady HJ (2014) The transcription factor E4bp4/Nfil3 controls commitment to the NK lineage and directly regulates Eomes and Id2 expression. J Exp Med 211:635–642

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marcoe JP, Lim JR, Schaubert KL, Fodil-Cornu N, Matka M, McCubbrey AL, Farr AR, Vidal SM, Laouar Y (2012) TGF-beta is responsible for NK cell immaturity during ontogeny and increased susceptibility to infection during mouse infancy. Nat Immunol 13:843–850

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martinet L, Ferrari De Andrade L, Guillerey C, Lee JS, Liu J, Souza-Fonseca-Guimaraes F, Hutchinson DS, Kolesnik TB, Nicholson SE, Huntington ND, Smyth MJ (2015) DNAM-1 expression marks an alternative program of NK cell maturation. Cell Rep 11:85–97

    Article  PubMed  CAS  Google Scholar 

  • Morgan B, Sun L, Avitahl N, Andrikopoulos K, Ikeda T, Gonzales E, Wu P, Neben S, Georgopoulos K (1997) Aiolos, a lymphoid restricted transcription factor that interacts with Ikaros to regulate lymphocyte differentiation. EMBO J 16:2004–2013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Murre C, McCaw PS, Baltimore D (1989a) A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783

    Article  PubMed  CAS  Google Scholar 

  • Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN, Cabrera CV, Buskin JN, Hauschka SD, Lassar AB (1989b) Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58:537–544

    Article  PubMed  CAS  Google Scholar 

  • Nabekura T, Kanaya M, Shibuya A, Fu G, Gascoigne NR, Lanier LL (2014) Costimulatory molecule DNAM-1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity 40:225–234

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Narni-Mancinelli E, Ugolini S, Vivier E (2013) Tuning the threshold of natural killer cell responses. Curr Opin Immunol 25:53–58

    Article  PubMed  CAS  Google Scholar 

  • Neill DR, Wong SH, Bellosi A, Flynn RJ, Daly M, Langford TK, Bucks C, Kane CM, Fallon PG, Pannell R et al (2010) Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464:1367–1370

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Oldham RK, Herberman RB (1973) Evaluation of cell-mediated cytotoxic reactivity against tumor associated antigens with 125I-iododeoxyuridine labeled target cells. J Immunol 111:862–871

    PubMed  CAS  Google Scholar 

  • Omi A, Enomoto Y, Kiniwa T, Miyata N, Miyajima A (2014) Mature resting Ly6C(high) natural killer cells can be reactivated by IL-15. Eur J Immunol 44:2638–2647

    Article  PubMed  CAS  Google Scholar 

  • Peng H, Jiang X, Chen Y, Sojka DK, Wei H, Gao X, Sun R, Yokoyama WM, Tian Z (2013) Liver-resident NK cells confer adaptive immunity in skin-contact inflammation. J Clin Investig 123:1444–1456

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Possot C, Schmutz S, Chea S, Boucontet L, Louise A, Cumano A, Golub R (2011) Notch signaling is necessary for adult, but not fetal, development of RORgammat(+) innate lymphoid cells. Nat Immunol 12:949–958

    Article  PubMed  CAS  Google Scholar 

  • Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, Locksley RM (2010) Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA 107:11489–11494

    Article  PubMed Central  PubMed  Google Scholar 

  • Ramirez K, Chandler KJ, Spaulding C, Zandi S, Sigvardsson M, Graves BJ, Kee BL (2012) Gene deregulation and chronic activation in natural killer cells deficient in the transcription factor ETS1. Immunity 36:921–932

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ring AM, Lin JX, Feng D, Mitra S, Rickert M, Bowman GR, Pande VS, Li P, Moraga I, Spolski R et al (2012) Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nat Immunol 13:1187–1195

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Rosmaraki EE, Douagi I, Roth C, Colucci F, Cumano A, Di Santo JP (2001) Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol 31:1900–1909

    Article  PubMed  CAS  Google Scholar 

  • Sarhan D, Palma M, Mao Y, Adamson L, Kiessling R, Mellstedt H, Osterborg A, Lundqvist A (2015) Dendritic cell regulation of NK-cell responses involves lymphotoxin-alpha, IL-12, and TGF-beta. Eur J Immunol 45:1783–1793

    Article  PubMed  CAS  Google Scholar 

  • Savage AK, Constantinides MG, Han J, Picard D, Martin E, Li B, Lantz O, Bendelac A (2008) The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity 29:391–403

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352:621–624

    Article  PubMed  CAS  Google Scholar 

  • Seillet C, Huntington ND, Gangatirkar P, Axelsson E, Minnich M, Brady HJ, Busslinger M, Smyth MJ, Belz GT, Carotta S (2014a) Differential Requirement for Nfil3 during NK Cell Development. J Immunol 192:2667–2676

    Article  PubMed  CAS  Google Scholar 

  • Seillet C, Rankin LC, Groom JR, Mielke LA, Tellier J, Chopin M, Huntington ND, Belz GT, Carotta S (2014b) Nfil3 is required for the development of all innate lymphoid cell subsets. J Exp Med

    Google Scholar 

  • Shibuya A, Campbell D, Hannum C, Yssel H, Franz-Bacon K, McClanahan T, Kitamura T, Nicholl J, Sutherland GR, Lanier LL, Phillips JH (1996) DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity 4:573–581

    Article  PubMed  CAS  Google Scholar 

  • Sivori S, Vitale M, Morelli L, Sanseverino L, Augugliaro R, Bottino C, Moretta L, Moretta A (1997) p46, a novel natural killer cell-specific surface molecule that mediates cell activation. J Exp Med 186:1129–1136

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Smyth MJ, Cretney E, Takeda K, Wiltrout RH, Sedger LM, Kayagaki N, Yagita H, Okumura K (2001) Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 193:661–670

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y, Zhong C, Chase JM, Rothman PB, Yu J et al (2014) Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. eLife 3:e01659

    Google Scholar 

  • Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE et al (2013) Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol 13:145–149

    Article  PubMed  CAS  Google Scholar 

  • Sun XH, Copeland NG, Jenkins NA, Baltimore D (1991) Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol 11:5603–5611

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Takeda K, Cretney E, Hayakawa Y, Ota T, Akiba H, Ogasawara K, Yagita H, Kinoshita K, Okumura K, Smyth MJ (2005) TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105:2082–2089

    Article  PubMed  CAS  Google Scholar 

  • Terme M, Ullrich E, Aymeric L, Meinhardt K, Coudert JD, Desbois M, Ghiringhelli F, Viaud S, Ryffel B, Yagita H et al (2012) Cancer-induced immunosuppression: IL-18-elicited immunoablative NK cells. Cancer Res 72:2757–2767

    Article  PubMed  CAS  Google Scholar 

  • Townsend MJ, Weinmann AS, Matsuda JL, Salomon R, Farnham PJ, Biron CA, Gapin L, Glimcher LH (2004) T-bet regulates the terminal maturation and homeostasis of NK and Valpha14i NKT cells. Immunity 20:477–494

    Article  PubMed  CAS  Google Scholar 

  • Tu TC, Brown NK, Kim TJ, Wroblewska J, Yang X, Guo X, Lee SH, Kumar V, Lee KM, Fu YX (2015) CD160 is essential for NK-mediated IFN-gamma production. J Exp Med 212:415–429

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vargas CL, Poursine-Laurent J, Yang L, Yokoyama WM (2011) Development of thymic NK cells from double negative 1 thymocyte precursors. Blood 118:3570–3578

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Voronova AF, Lee F (1994) The E2A and tal-1 helix-loop-helix proteins associate in vivo and are modulated by Id proteins during interleukin 6-induced myeloid differentiation. Proc Natl Acad Sci USA 91:5952–5956

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vosshenrich CA, Garcia-Ojeda ME, Samson-Villeger SI, Pasqualetto V, Enault L, Richard-Le Goff O, Corcuff E, Guy-Grand D, Rocha B, Cumano A et al (2006) A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD127. Nat Immunol 7:1217–1224

    Article  PubMed  CAS  Google Scholar 

  • Waldmann TA (2014) Interleukin-15 in the treatment of cancer. Expert Rev Clin Immunol 10:1689–1701

    Article  PubMed  CAS  Google Scholar 

  • Walzer T, Blery M, Chaix J, Fuseri N, Chasson L, Robbins SH, Jaeger S, Andre P, Gauthier L, Daniel L et al (2007a) Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci USA 104:3384–3389

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Walzer T, Chiossone L, Chaix J, Calver A, Carozzo C, Garrigue-Antar L, Jacques Y, Baratin M, Tomasello E, Vivier E (2007b) Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat Immunol 8:1337–1344

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Domingues RG, Fonseca-Pereira D, Ferreira M, Ribeiro H, Lopez-Lastra S, Motomura Y, Moreira-Santos L, Bihl F, Braud V et al (2015) NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep 10:2043–2054

    Article  PubMed  CAS  Google Scholar 

  • Yagi R, Zhong C, Northrup DL, Yu F, Bouladoux N, Spencer S, Hu G, Barron L, Sharma S, Nakayama T et al (2014) The transcription factor GATA3 is critical for the development of all IL-7Ralpha-expressing innate lymphoid cells. Immunity 40:378–388

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706

    Article  PubMed  CAS  Google Scholar 

  • Yoshida H, Kawamoto H, Santee SM, Hashi H, Honda K, Nishikawa S, Ware CF, Katsura Y, Nishikawa SI (2001) Expression of alpha(4)beta(7) integrin defines a distinct pathway of lymphoid progenitors committed to T cells, fetal intestinal lymphotoxin producer, NK, and dendritic cells. J Immunol 167:2511–2521

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Wang Y, Deng M, Li Y, Ruhn KA, Zhang CC, Hooper LV (2014) The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. eLife 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Huntington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Seillet, C., Belz, G.T., Huntington, N.D. (2015). Development, Homeostasis, and Heterogeneity of NK Cells and ILC1. In: Vivier, E., Di Santo, J., Moretta, A. (eds) Natural Killer Cells. Current Topics in Microbiology and Immunology, vol 395. Springer, Cham. https://doi.org/10.1007/82_2015_474

Download citation

Publish with us

Policies and ethics