Skip to main content
Top

21-08-2017 | Cervical cancer | Article

The value of advanced MRI techniques in the assessment of cervical cancer: a review

Journal: Insights into Imaging

Authors: Evelyn Dappa, Tania Elger, Annette Hasenburg, Christoph Düber, Marco J. Battista, Andreas M. Hötker

Publisher: Springer Berlin Heidelberg

Abstract

Objectives

To assess the value of new magnetic resonance imaging (MRI) techniques in cervical cancer.

Methods

We searched PubMed and MEDLINE and reviewed articles published from 1990 to 2016 to identify studies that used MRI techniques, such as diffusion weighted imaging (DWI), intravoxel incoherent motion (IVIM) and dynamic contrast enhancement (DCE) MRI, to assess parametric invasion, to detect lymph node metastases, tumour subtype and grading, and to detect and predict tumour recurrence.

Results

Seventy-nine studies were included. The additional use of DWI improved the accuracy and sensitivity of the evaluation of parametrial extension. Most studies reported improved detection of nodal metastases. Functional MRI techniques have the potential to assess tumour subtypes and tumour grade differentiation, and they showed additional value in detecting and predicting treatment response. Limitations included a lack of technical standardisation, which limits reproducibility.

Conclusions

New advanced MRI techniques allow improved analysis of tumour biology and the tumour microenvironment. They can improve TNM staging and show promise for tumour classification and for assessing the risk of tumour recurrence. They may be helpful for developing optimised and personalised therapy for patients with cervical cancer.

Teaching points

• Conventional MRI plays a key role in the evaluation of cervical cancer.
• DWI improves tumour delineation and detection of nodal metastases in cervical cancer.
• Advanced MRI techniques show promise regarding histological grading and subtype differentiation.
• Tumour ADC is a potential biomarker for response to treatment.
Literature
1.
Ferlay J, Soerjomataram I, Dikshit R et al (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386PubMedCrossRef
2.
Pecorelli S (2009) Revised FIGO staging for carcinoma of the vulva, cervix, and endometrium. Int J Gynaecol Obstet 105:103–104PubMedCrossRef
3.
Bleker SM, Bipat S, Spijkerboer AM, van der Velden J, Stoker J, Kenter GG (2013) The negative predictive value of clinical examination with or without anesthesia versus magnetic resonance imaging for parametrial infiltration in cervical cancer stages IB1 to IIA. Int J Gynecol Cancer 23:193–198PubMedCrossRef
4.
Dhoot NM, Kumar V, Shinagare A, Kataki AC, Barmon D, Bhuyan U (2012) Evaluation of carcinoma cervix using magnetic resonance imaging: correlation with clinical FIGO staging and impact on management. J Med Imaging Radiat Oncol 56:58–65PubMedCrossRef
5.
Kraljevic Z, Viskovic K, Ledinsky M et al (2013) Primary uterine cervical cancer: correlation of preoperative magnetic resonance imaging and clinical staging (FIGO) with histopathology findings. Coll Antropol 37:561–568PubMed
6.
Mitchell DG, Snyder B, Coakley F et al (2006) Early invasive cervical cancer: tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GOG 183 Intergroup Study. J Clin Oncol 24:5687–5694PubMedCrossRef
7.
Rajaram S, Sharma H, Bhargava SK, Tripathi RP, Goel N, Mehta S (2010) Mapping the extent of disease by multislice computed tomography, magnetic resonance imaging and sentinel node evaluation in stage I and II cervical carcinoma. J Cancer Res Ther 6:267–271PubMedCrossRef
8.
Pareja R, Rendon GJ, Vasquez M, Echeverri L, Sanz-Lomana CM, Ramirez PT (2015) Immediate radical trachelectomy versus neoadjuvant chemotherapy followed by conservative surgery for patients with stage IB1 cervical cancer with tumors 2cm or larger: a literature review and analysis of oncological and obstetrical outcomes. Gynecol Oncol 137:574–580PubMedCrossRef
9.
Downey K, Jafar M, Attygalle AD et al (2013) Influencing surgical management in patients with carcinoma of the cervix using a T2- and ZOOM-diffusion-weighted endovaginal MRI technique. Br J Cancer 109:615–622PubMedPubMedCentralCrossRef
10.
Singh N, Arif S (2004) Histopathologic parameters of prognosis in cervical cancer—a review. Int J Gynecol Cancer 14:741–750PubMedCrossRef
11.
Zaino RJ, Ward S, Delgado G et al (1992) Histopathologic predictors of the behavior of surgically treated stage IB squamous cell carcinoma of the cervix. A Gynecologic Oncology Group study. Cancer 69:1750–1758PubMed
12.
Kohler C, Mustea A, Marnitz S et al (2015) Perioperative morbidity and rate of upstaging after laparoscopic staging for patients with locally advanced cervical cancer: results of a prospective randomized trial. Am J Obstet Gynecol 213(503):e501–e507
13.
Katanyoo K, Sanguanrungsirikul S, Manusirivithaya S (2012) Comparison of treatment outcomes between squamous cell carcinoma and adenocarcinoma in locally advanced cervical cancer. Gynecol Oncol 125:292–296PubMedCrossRef
14.
Downey K, Riches SF, Morgan VA et al (2013) Relationship between imaging biomarkers of stage I cervical cancer and poor-prognosis histologic features: quantitative histogram analysis of diffusion-weighted MR images. AJR Am J Roentgenol 200:314–320PubMedCrossRef
15.
Ries LAG, Krapcho M, Stinchcomb DG, Howlader N, Horner MJ, Mariotto A et al (2007) SEER Cancer Statistics Review, 1975-2005. National Cancer Institute, Bethesda
16.
Cohen JG, Kapp DS, Shin JY et al (2010) Small cell carcinoma of the cervix: treatment and survival outcomes of 188 patients. Am J Obstet Gynecol 203(347):e341–e346
17.
Mangler M, Lanowska M, Kohler C, Vercellino F, Schneider A, Speiser D (2014) Pattern of cancer recurrence in 320 patients after radical vaginal trachelectomy. Int J Gynecol Cancer 24:130–134PubMedCrossRef
18.
Zhou Y, Liu J, Liu C et al (2016) Intravoxel incoherent motion diffusion weighted MRI of cervical cancer—correlated with tumor differentiation and perfusion. Magn Reson Imaging 34:1050–1056PubMedCrossRef
19.
Dominietto M, Rudin M (2014) Could magnetic resonance provide in vivo histology? Front Genet 4:298PubMedPubMedCentralCrossRef
20.
Sala E, Rockall AG, Freeman SJ, Mitchell DG, Reinhold C (2013) The added role of MR imaging in treatment stratification of patients with gynecologic malignancies: what the radiologist needs to know. Radiology 266:717–740PubMedCrossRef
21.
Balleyguier C, Sala E, Da Cunha T et al (2011) Staging of uterine cervical cancer with MRI: guidelines of the European Society of Urogenital Radiology. Eur Radiol 21:1102–1110PubMedCrossRef
22.
Gladwish A, Milosevic M, Fyles A et al (2016) Association of apparent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy. Radiology 279:158–166PubMedCrossRef
23.
Hotker AM, Mazaheri Y, Aras O et al (2016) Assessment of prostate cancer aggressiveness by use of the combination of quantitative DWI and dynamic contrast-enhanced MRI. AJR Am J Roentgenol 206:756–763PubMedPubMedCentralCrossRef
24.
Dhanda S, Thakur M, Kerkar R, Jagmohan P (2014) Diffusion-weighted imaging of gynecologic tumors: diagnostic pearls and potential pitfalls. Radiographics 34:1393–1416PubMedCrossRef
25.
Bammer R (2003) Basic principles of diffusion-weighted imaging. Eur J Radiol 45:169–184PubMedCrossRef
26.
Woo S, Kim SY, Cho JY, Kim SH (2016) Preoperative evaluation of prostate cancer aggressiveness: using ADC and ADC ratio in determining Gleason Score. AJR Am J Roentgenol 207:114–120PubMedCrossRef
27.
Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M (1988) Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 168:497–505PubMedCrossRef
28.
Lee EY, Yu X, Chu MM et al (2014) Perfusion and diffusion characteristics of cervical cancer based on intraxovel incoherent motion MR imaging-a pilot study. Eur Radiol 24:1506–1513PubMedCrossRef
29.
Le Bihan D (2008) Intravoxel incoherent motion perfusion MR imaging: a wake-up call. Radiology 249:748–752PubMedCrossRef
30.
Berman RM, Brown AM, Chang SD et al (2016) DCE MRI of prostate cancer. Abdom Radiol (NY) 41:844–853CrossRef
31.
Shweel MA, Abdel-Gawad EA, Abdel-Gawad EA, Abdelghany HS, Abdel-Rahman AM, Ibrahim EM (2012) Uterine cervical malignancy: diagnostic accuracy of MRI with histopathologic correlation. J Clin Imaging Sci 2:42PubMedPubMedCentralCrossRef
32.
Chung HH, Kang SB, Cho JY et al (2007) Can preoperative MRI accurately evaluate nodal and parametrial invasion in early stage cervical cancer? Jpn J Clin Oncol 37:370–375PubMedCrossRef
33.
Choi SH, Kim SH, Choi HJ, Park BK, Lee HJ (2004) Preoperative magnetic resonance imaging staging of uterine cervical carcinoma: results of prospective study. J Comput Assist Tomogr 28:620–627PubMedCrossRef
34.
Thomeer MG, Gerestein C, Spronk S, van Doorn HC, van der Ham E, Hunink MG (2013) Clinical examination versus magnetic resonance imaging in the pretreatment staging of cervical carcinoma: systematic review and meta-analysis. Eur Radiol 23:2005–2018PubMedCrossRef
35.
Micco M, Sala E, Lakhman Y, Hricak H, Vargas HA (2014) Role of imaging in the pretreatment evaluation of common gynecological cancers. Womens Health (Lond) 10:299–321CrossRef
36.
Sahdev A, Sohaib SA, Wenaden AE, Shepherd JH, Reznek RH (2007) The performance of magnetic resonance imaging in early cervical carcinoma: a long-term experience. Int J Gynecol Cancer 17:629–636PubMedCrossRef
37.
Lien HH, Blomlie V, Iversen T, Trope C, Sundfor K, Abeler VM (1993) Clinical stage I carcinoma of the cervix. Value of MR imaging in determining invasion into the parametrium. Acta Radiol 34:130–132PubMedCrossRef
38.
Exner M, Kuhn A, Stumpp P et al (2016) Value of diffusion-weighted MRI in diagnosis of uterine cervical cancer: a prospective study evaluating the benefits of DWI compared to conventional MR sequences in a 3T environment. Acta Radiol 57:869–877PubMedCrossRef
39.
Park JJ, Kim CK, Park SY, Park BK (2015) Parametrial invasion in cervical cancer: fused T2-weighted imaging and high-b-value diffusion-weighted imaging with background body signal suppression at 3 T. Radiology 274:734–741PubMedCrossRef
40.
Downey K, Attygalle AD, Morgan VA et al (2016) Comparison of optimised endovaginal vs external array coil T2-weighted and diffusion-weighted imaging techniques for detecting suspected early stage (IA/IB1) uterine cervical cancer. Eur Radiol 26:941–950PubMedCrossRef
41.
Valentini AL, Gui B, Micco M et al (2016) MRI anatomy of parametrial extension to better identify local pathways of disease spread in cervical cancer. Diagn Interv Radiol 22:319–325PubMedPubMedCentralCrossRef
42.
Kuang F, Yan Z, Wang J, Rao Z (2014) The value of diffusion-weighted MRI to evaluate the response to radiochemotherapy for cervical cancer. Magn Reson Imaging 32:342–349PubMedCrossRef
43.
Chopra S, Verma A, Kundu S et al (2012) Evaluation of diffusion-weighted imaging as a predictive marker for tumor response in patients undergoing chemoradiation for postoperative recurrences of cervical cancer. J Cancer Res Ther 8:68–73PubMedCrossRef
44.
Park JJ, Kim CK, Park SY, Park BK, Kim B (2014) Value of diffusion-weighted imaging in predicting parametrial invasion in stage IA2-IIA cervical cancer. Eur Radiol 24:1081–1088PubMedCrossRef
45.
Hong KS, Ju W, Choi HJ, Kim JK, Kim MH, Cho KS (2010) Differential diagnostic performance of magnetic resonance imaging in the detection of lymph node metastases according to the tumor size in early-stage cervical cancer patients. Int J Gynecol Cancer 20:841–846PubMedCrossRef
46.
Park W, Park YJ, Huh SJ et al (2005) The usefulness of MRI and PET imaging for the detection of parametrial involvement and lymph node metastasis in patients with cervical cancer. Jpn J Clin Oncol 35:260–264PubMedCrossRef
47.
Manfredi R, Gui B, Giovanzana A et al (2009) Localized cervical cancer (stage <IIB): accuracy of MR imaging in planning less extensive surgery. Radiol Med 114:960–975PubMedCrossRef
48.
Reinhardt MJ, Ehritt-Braun C, Vogelgesang D et al (2001) Metastatic lymph nodes in patients with cervical cancer: detection with MR imaging and FDG PET. Radiology 218:776–782PubMedCrossRef
49.
Choi HJ, Roh JW, Seo SS et al (2006) Comparison of the accuracy of magnetic resonance imaging and positron emission tomography/computed tomography in the presurgical detection of lymph node metastases in patients with uterine cervical carcinoma: a prospective study. Cancer 106:914–922PubMedCrossRef
50.
Yang WT, Lam WW, Yu MY, Cheung TH, Metreweli C (2000) Comparison of dynamic helical CT and dynamic MR imaging in the evaluation of pelvic lymph nodes in cervical carcinoma. AJR Am J Roentgenol 175:759–766PubMedCrossRef
51.
Hawighorst H, Schoenberg SO, Knapstein PG et al (1998) Staging of invasive cervical carcinoma and of pelvic lymph nodes by high resolution MRI with a phased-array coil in comparison with pathological findings. J Comput Assist Tomogr 22:75–81PubMedCrossRef
52.
Scheidler J, Hricak H, Yu KK, Subak L, Segal MR (1997) Radiological evaluation of lymph node metastases in patients with cervical cancer. A meta-analysis. JAMA 278:1096–1101PubMed
53.
Yoo SC, Kim WY, Yoon JH et al (2009) Accuracy of preoperative magnetic resonance imaging in assessing lymph node metastasis and myometrial invasion in patients with uterine cancer. Eur J Gynaecol Oncol 30:167–170PubMed
54.
Lv K, Guo HM, Lu YJ, Wu ZX, Zhang K, Han JK (2014) Role of 18F-FDG PET/CT in detecting pelvic lymph-node metastases in patients with early-stage uterine cervical cancer: comparison with MRI findings. Nucl Med Commun 35:1204–1211PubMedCrossRef
55.
Shen G, Zhou H, Jia Z, Deng H (2015) Diagnostic performance of diffusion-weighted MRI for detection of pelvic metastatic lymph nodes in patients with cervical cancer: a systematic review and meta-analysis. Br J Radiol 88:20150063PubMedPubMedCentralCrossRef
56.
He XQ, Wei LN (2016) Diagnostic value of lymph node metastasis by diffusion-weighted magnetic resonance imaging in cervical cancer. J Cancer Res Ther 12:77–83PubMedCrossRef
57.
Liu Y, Liu H, Bai X et al (2011) Differentiation of metastatic from non-metastatic lymph nodes in patients with uterine cervical cancer using diffusion-weighted imaging. Gynecol Oncol 122:19–24PubMedCrossRef
58.
Yu SP, He L, Liu B, Zhuang XZ, Liu MJ, Hu XS (2010) Differential diagnosis of metastasis from non-metastatic lymph nodes in cervical cancers: pilot study of diffusion weighted imaging with background suppression at 3T magnetic resonance. Chin Med J (Engl) 123:2820–2824
59.
Chen YB, Hu CM, Chen GL, Hu D, Liao J (2011) Staging of uterine cervical carcinoma: whole-body diffusion-weighted magnetic resonance imaging. Abdom Imaging 36:619–626PubMedCrossRef
60.
Chen YB, Liao J, Xie R, Chen GL, Chen G (2011) Discrimination of metastatic from hyperplastic pelvic lymph nodes in patients with cervical cancer by diffusion-weighted magnetic resonance imaging. Abdom Imaging 36:102–109PubMedCrossRef
61.
Choi EK, Kim JK, Choi HJ et al (2009) Node-by-node correlation between MR and PET/CT in patients with uterine cervical cancer: diffusion-weighted imaging versus size-based criteria on T2WI. Eur Radiol 19:2024–2032PubMedCrossRef
62.
Park SO, Kim JK, Kim KA et al (2009) Relative apparent diffusion coefficient: determination of reference site and validation of benefit for detecting metastatic lymph nodes in uterine cervical cancer. J Magn Reson Imaging 29:383–390PubMedCrossRef
63.
Kim JK, Kim KA, Park BW, Kim N, Cho KS (2008) Feasibility of diffusion-weighted imaging in the differentiation of metastatic from nonmetastatic lymph nodes: early experience. J Magn Reson Imaging 28:714–719PubMedCrossRef
64.
Lin G, Ho KC, Wang JJ et al (2008) Detection of lymph node metastasis in cervical and uterine cancers by diffusion-weighted magnetic resonance imaging at 3T. J Magn Reson Imaging 28:128–135PubMedCrossRef
65.
Klerkx WM, Veldhuis WB, Spijkerboer AM et al (2012) The value of 3.0 tesla diffusion-weighted MRI for pelvic nodal staging in patients with early stage cervical cancer. Eur J Cancer 48:3414–3421PubMedCrossRef
66.
Nakai G, Matsuki M, Inada Y et al (2008) Detection and evaluation of pelvic lymph nodes in patients with gynecologic malignancies using body diffusion-weighted magnetic resonance imaging. J Comput Assist Tomogr 32:764–768PubMedCrossRef
67.
Rizzo S, Calareso G, Maccagnoni S et al (2014) Pre-operative MR evaluation of features that indicate the need of adjuvant therapies in early stage cervical cancer patients. A single-centre experience. Eur J Radiol 83:858–864PubMedCrossRef
68.
Gonzalez-Benitez C, Zapardiel I, Salas PI, Diestro MD, Hernandez A, De Santiago J (2013) Nodal involvement evaluation in advanced cervical cancer: a single institutional experience. Eur J Gynaecol Oncol 34:138–141PubMed
69.
Choi HJ, Ju W, Myung SK, Kim Y (2010) Diagnostic performance of computer tomography, magnetic resonance imaging, and positron emission tomography or positron emission tomography/computer tomography for detection of metastatic lymph nodes in patients with cervical cancer: meta-analysis. Cancer Sci 101:1471–1479PubMedCrossRef
70.
Monteil J, Maubon A, Leobon S et al (2011) Lymph node assessment with (18)F-FDG-PET and MRI in uterine cervical cancer. Anticancer Res 31:3865–3871PubMed
71.
Kitajima K, Yamasaki E, Kaji Y, Murakami K, Sugimura K (2012) Comparison of DWI and PET/CT in evaluation of lymph node metastasis in uterine cancer. World J Radiol 4:207–214PubMedPubMedCentralCrossRef
72.
Mirpour S, Mhlanga JC, Logeswaran P, Russo G, Mercier G, Subramaniam RM (2013) The role of PET/CT in the management of cervical cancer. AJR Am J Roentgenol 201:W192–W205PubMedCrossRef
73.
Rockall AG, Sohaib SA, Harisinghani MG et al (2005) Diagnostic performance of nanoparticle-enhanced magnetic resonance imaging in the diagnosis of lymph node metastases in patients with endometrial and cervical cancer. J Clin Oncol 23:2813–2821PubMedCrossRef
74.
Atri M, Zhang Z, Marques H et al (2015) Utility of preoperative ferumoxtran-10 MRI to evaluate retroperitoneal lymph node metastasis in advanced cervical cancer: Results of ACRIN 6671/GOG 0233. Eur J Radiol Open 2:11–18PubMedCrossRef
75.
Laghi A, Paolantonio P, Panebianco V et al (2004) Decrease of signal intensity of myometrium and cervical stroma after ultrasmall superparamagnetic iron oxide (USPIO) particles administration: an MR finding with potential benefits in T staging of uterine neoplasms. Invest Radiol 39:666–670PubMedCrossRef
76.
Keller TM, Michel SC, Frohlich J et al (2004) USPIO-enhanced MRI for preoperative staging of gynecological pelvic tumors: preliminary results. Eur Radiol 14:937–944PubMedCrossRef
77.
Shi Q, Pisani LJ, Lee YK et al (2013) Evaluation of the novel USPIO GEH121333 for MR imaging of cancer immune responses. Contrast Media Mol Imaging 8:281–288PubMedPubMedCentralCrossRef
78.
Heijnen LA, Lambregts DM, Martens MH et al (2014) Performance of gadofosveset-enhanced MRI for staging rectal cancer nodes: can the initial promising results be reproduced? Eur Radiol 24:371–379PubMedCrossRef
79.
Naganawa S, Sato C, Kumada H, Ishigaki T, Miura S, Takizawa O (2005) Apparent diffusion coefficient in cervical cancer of the uterus: comparison with the normal uterine cervix. Eur Radiol 15:71–78PubMedCrossRef
80.
Hoogendam JP, Klerkx WM, de Kort GA et al (2010) The influence of the b-value combination on apparent diffusion coefficient based differentiation between malignant and benign tissue in cervical cancer. J Magn Reson Imaging 32:376–382PubMedCrossRef
81.
Payne GS, Schmidt M, Morgan VA et al (2010) Evaluation of magnetic resonance diffusion and spectroscopy measurements as predictive biomarkers in stage 1 cervical cancer. Gynecol Oncol 116:246–252PubMedCrossRef
82.
Chen J, Zhang Y, Liang B, Yang Z (2010) The utility of diffusion-weighted MR imaging in cervical cancer. Eur J Radiol 74:e101–e106PubMedCrossRef
83.
Kilickesmez O, Bayramoglu S, Inci E, Cimilli T, Kayhan A (2009) Quantitative diffusion-weighted magnetic resonance imaging of normal and diseased uterine zones. Acta Radiol 50:340–347PubMedCrossRef
84.
Charles-Edwards EM, Messiou C, Morgan VA et al (2008) Diffusion-weighted imaging in cervical cancer with an endovaginal technique: potential value for improving tumor detection in stage Ia and Ib1 disease. Radiology 249:541–550PubMedCrossRef
85.
Xue HD, Li S, Sun F et al (2008) Clinical application of body diffusion weighted MR imaging in the diagnosis and preoperative N staging of cervical cancer. Chin Med Sci J 23:133–137PubMedCrossRef
86.
McVeigh PZ, Syed AM, Milosevic M, Fyles A, Haider MA (2008) Diffusion-weighted MRI in cervical cancer. Eur Radiol 18:1058–1064PubMedCrossRef
87.
Kuang F, Yan Z, Li H, Feng H (2015) Diagnostic accuracy of diffusion-weighted MRI for differentiation of cervical cancer and benign cervical lesions at 3.0T: comparison with routine MRI and dynamic contrast-enhanced MRI. J Magn Reson Imaging 42:1094–1099PubMedCrossRef
88.
Mainenti PP, Pizzuti LM, Segreto S et al (2016) Diffusion volume (DV) measurement in endometrial and cervical cancer: a new MRI parameter in the evaluation of the tumor grading and the risk classification. Eur J Radiol 85:113–124PubMedCrossRef
89.
Kuang F, Ren J, Zhong Q, Liyuan F, Huan Y, Chen Z (2013) The value of apparent diffusion coefficient in the assessment of cervical cancer. Eur Radiol 23:1050–1058PubMedCrossRef
90.
Liu Y, Ye Z, Sun H, Bai R (2013) Grading of uterine cervical cancer by using the ADC difference value and its correlation with microvascular density and vascular endothelial growth factor. Eur Radiol 23:757–765PubMedCrossRef
91.
Liu Y, Bai R, Sun H, Liu H, Wang D (2009) Diffusion-weighted magnetic resonance imaging of uterine cervical cancer. J Comput Assist Tomogr 33:858–862PubMedCrossRef
92.
Xue H, Ren C, Yang J et al (2014) Histogram analysis of apparent diffusion coefficient for the assessment of local aggressiveness of cervical cancer. Arch Gynecol Obstet 290:341–348PubMedCrossRef
93.
Winfield JM, Orton MR, Collins DJ et al (2016) Separation of type and grade in cervical tumours using non-mono-exponential models of diffusion-weighted MRI. Eur Radiol. doi:10.​1007/​s00330-016-4417-0
94.
Thoeny HC, Forstner R, De Keyzer F (2012) Genitourinary applications of diffusion-weighted MR imaging in the pelvis. Radiology 263:326–342PubMedCrossRef
95.
Donati OF, Chong D, Nanz D et al (2014) Diffusion-weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 270:454–463PubMedCrossRef
96.
Lee EY, Hui ES, Chan KK et al (2015) Relationship between intravoxel incoherent motion diffusion-weighted MRI and dynamic contrast-enhanced MRI in tissue perfusion of cervical cancers. J Magn Reson Imaging 42:454–459PubMedCrossRef
97.
Yamashita Y, Baba T, Baba Y et al (2000) Dynamic contrast-enhanced MR imaging of uterine cervical cancer: pharmacokinetic analysis with histopathologic correlation and its importance in predicting the outcome of radiation therapy. Radiology 216:803–809PubMedCrossRef
98.
Schreuder SM, Lensing R, Stoker J, Bipat S (2015) Monitoring treatment response in patients undergoing chemoradiotherapy for locally advanced uterine cervical cancer by additional diffusion-weighted imaging: a systematic review. J Magn Reson Imaging 42:572–594PubMedCrossRef
99.
Mahajan A, Engineer R, Chopra S et al (2016) Role of 3T multiparametric-MRI with BOLD hypoxia imaging for diagnosis and post therapy response evaluation of postoperative recurrent cervical cancers. Eur J Radiol Open 3:22–30PubMedCrossRef
100.
Lucas R, Lopes Dias J, Cunha TM (2015) Added value of diffusion-weighted MRI in detection of cervical cancer recurrence: comparison with morphologic and dynamic contrast-enhanced MRI sequences. Diagn Interv Radiol 21:368–375PubMedPubMedCentralCrossRef
101.
Erbay G, Onal C, Karadeli E, Guler OC, Arica S, Koc Z (2016) Predicting tumor recurrence in patients with cervical carcinoma treated with definitive chemoradiotherapy: value of quantitative histogram analysis on diffusion-weighted MR images. Acta Radiol. doi:10.​1177/​0284185116656492​
102.
Himoto Y, Fujimoto K, Kido A et al (2015) Pretreatment mean apparent diffusion coefficient is significantly correlated with event-free survival in patients with International Federation of Gynecology and Obstetrics stage Ib to IIIb cervical cancer. Int J Gynecol Cancer 25:1079–1085PubMedCrossRef
103.
Heo SH, Shin SS, Kim JW et al (2013) Pre-treatment diffusion-weighted MR imaging for predicting tumor recurrence in uterine cervical cancer treated with concurrent chemoradiation: value of histogram analysis of apparent diffusion coefficients. Korean J Radiol 14:616–625PubMedPubMedCentralCrossRef
104.
Micco M, Vargas HA, Burger IA et al (2014) Combined pre-treatment MRI and 18F-FDG PET/CT parameters as prognostic biomarkers in patients with cervical cancer. Eur J Radiol 83:1169–1176PubMedCrossRef
105.
Marconi DG, Fregnani JH, Rossini RR et al (2016) Pre-treatment MRI minimum apparent diffusion coefficient value is a potential prognostic imaging biomarker in cervical cancer patients treated with definitive chemoradiation. BMC Cancer 16:556PubMedPubMedCentralCrossRef
106.
Nakamura K, Joja I, Nagasaka T et al (2012) The mean apparent diffusion coefficient value (ADCmean) on primary cervical cancer is a predictive marker for disease recurrence. Gynecol Oncol 127:478–483PubMedCrossRef
107.
Zhou G, Chen X, Tang F, Zhou J, Wang Y, Wang Z (2016) The value of diffusion-weighted imaging in predicting the prognosis of stage IB-IIA cervical squamous cell carcinoma after radical hysterectomy. Int J Gynecol Cancer 26:361–366PubMedCrossRef
108.
Bae JM, Kim CK, Park JJ, Park BK (2016) Can diffusion-weighted magnetic resonance imaging predict tumor recurrence of uterine cervical cancer after concurrent chemoradiotherapy? Abdom Radiol (NY) 41:1604–1610CrossRef
109.
Das S, Chandramohan A, Reddy JK et al (2015) Role of conventional and diffusion weighted MRI in predicting treatment response after low dose radiation and chemotherapy in locally advanced carcinoma cervix. Radiother Oncol 117:288–293PubMedCrossRef
110.
Fu C, Bian D, Liu F, Feng X, Du W, Wang X (2012) The value of diffusion-weighted magnetic resonance imaging in assessing the response of locally advanced cervical cancer to neoadjuvant chemotherapy. Int J Gynecol Cancer 22:1037–1043PubMedCrossRef
111.
Kim HS, Kim CK, Park BK, Huh SJ, Kim B (2013) Evaluation of therapeutic response to concurrent chemoradiotherapy in patients with cervical cancer using diffusion-weighted MR imaging. J Magn Reson Imaging 37:187–193PubMedCrossRef
112.
Liu Y, Sun H, Bai R, Ye Z (2015) Time-window of early detection of response to concurrent chemoradiation in cervical cancer by using diffusion-weighted MR imaging: a pilot study. Radiat Oncol 10:185PubMedPubMedCentralCrossRef
113.
Makino H, Kato H, Furui T, Morishige K, Kanematsu M (2014) Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for uterine cervical cancer. J Obstet Gynaecol Res 40:1098–1104PubMedCrossRef
114.
Nakamura K, Kajitani S, Joja I et al (2013) The posttreatment mean apparent diffusion coefficient of primary tumor is superior to pretreatment ADCmean of primary tumor as a predictor of prognosis with cervical cancer. Cancer Med 2:519–525PubMedPubMedCentralCrossRef
115.
Ni X, Tong Y, Xiao Y, Liao J, Chen Y, Wang M (2015) Diffusion-weighted magnetic resonance imaging in predicting the radiosensitivity of cervical cancer. Int J Clin Exp Med 8:13836–13841PubMedPubMedCentral
116.
Onal C, Erbay G, Guler OC (2016) Treatment response evaluation using the mean apparent diffusion coefficient in cervical cancer patients treated with definitive chemoradiotherapy. J Magn Reson Imaging 44:1010–1019PubMedCrossRef
117.
Park JJ, Kim CK, Park SY et al (2014) Assessment of early response to concurrent chemoradiotherapy in cervical cancer: value of diffusion-weighted and dynamic contrast-enhanced MR imaging. Magn Reson Imaging 32:993–1000PubMedCrossRef
118.
Rizzo S, Buscarino V, Origgi D et al (2016) Evaluation of diffusion-weighted imaging (DWI) and MR spectroscopy (MRS) as early response biomarkers in cervical cancer patients. Radiol Med. doi:10.​1007/​s11547-016-0665-y
119.
Somoye G, Harry V, Semple S et al (2012) Early diffusion weighted magnetic resonance imaging can predict survival in women with locally advanced cancer of the cervix treated with combined chemo-radiation. Eur Radiol 22:2319–2327PubMedCrossRef
120.
Wang YC, Hu DY, Hu XM et al (2016) Assessing the early response of advanced cervical cancer to neoadjuvant chemotherapy using intravoxel incoherent motion diffusion-weighted magnetic resonance imaging: a pilot study. Chin Med J (Engl) 129:665–671CrossRef
121.
Wu Y, Yu D, Bai XL, Zhu W, Su N (2016) MRI in the synchronic chemoradiotherapy of cervical squamous cell carcinoma. Eur J Gynaecol Oncol 37:380–383PubMed
122.
Zhang Y, Chen JY, Xie CM et al (2011) Diffusion-weighted magnetic resonance imaging for prediction of response of advanced cervical cancer to chemoradiation. J Comput Assist Tomogr 35:102–107PubMedCrossRef
123.
Fu ZZ, Peng Y, Cao LY, Chen YS, Li K, Fu BH (2015) Value of apparent diffusion coefficient (ADC) in assessing radiotherapy and chemotherapy success in cervical cancer. Magn Reson Imaging 33:516–524PubMedCrossRef
124.
Fu C, Feng X, Bian D et al (2015) Simultaneous changes of magnetic resonance diffusion-weighted imaging and pathological microstructure in locally advanced cervical cancer caused by neoadjuvant chemotherapy. J Magn Reson Imaging 42:427–435PubMedCrossRef
125.
Levy A, Caramella C, Chargari C et al (2011) Accuracy of diffusion-weighted echo-planar MR imaging and ADC mapping in the evaluation of residual cervical carcinoma after radiation therapy. Gynecol Oncol 123:110–115PubMedCrossRef
126.
Park JJ, Kim CK, Park BK (2016) Prediction of disease progression following concurrent chemoradiotherapy for uterine cervical cancer: value of post-treatment diffusion-weighted imaging. Eur Radiol 26:3272–3279PubMedCrossRef
127.
Zhu L, Zhu L, Shi H et al (2015) Evaluating early response of cervical cancer under concurrent chemo-radiotherapy by intravoxel incoherent motion MR imaging. BMC Cancer 16:79CrossRef
128.
Fyles A, Milosevic M, Hedley D et al (2002) Tumor hypoxia has independent predictor impact only in patients with node-negative cervix cancer. J Clin Oncol 20:680–687PubMedCrossRef
129.
Zahra MA, Tan LT, Priest AN et al (2009) Semiquantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging measurements predict radiation response in cervix cancer. Int J Radiat Oncol Biol Phys 74:766–773PubMedCrossRef
130.
Hameeduddin A, Sahdev A (2015) Diffusion-weighted imaging and dynamic contrast-enhanced MRI in assessing response and recurrent disease in gynaecological malignancies. Cancer Imaging 15:3PubMedPubMedCentralCrossRef
131.
Torheim T, Groendahl AR, Andersen EK et al (2016) Cluster analysis of dynamic contrast enhanced MRI reveals tumor subregions related to locoregional relapse for cervical cancer patients. Acta Oncol. doi:10.​1080/​0284186x.​2016.​1189091:​1-5
132.
Mayr NA, Yuh WT, Magnotta VA et al (1996) Tumor perfusion studies using fast magnetic resonance imaging technique in advanced cervical cancer: a new noninvasive predictive assay. Int J Radiat Oncol Biol Phys 36:623–633PubMedCrossRef
133.
Lund KV, Simonsen TG, Hompland T, Kristensen GB, Rofstad EK (2015) Short-term pretreatment DCE-MRI in prediction of outcome in locally advanced cervical cancer. Radiother Oncol 115:379–385PubMedCrossRef
134.
Halle C, Andersen E, Lando M et al (2012) Hypoxia-induced gene expression in chemoradioresistant cervical cancer revealed by dynamic contrast-enhanced MRI. Cancer Res 72:5285–5295PubMedCrossRef
135.
Andersen EK, Hole KH, Lund KV et al (2013) Pharmacokinetic parameters derived from dynamic contrast enhanced MRI of cervical cancers predict chemoradiotherapy outcome. Radiother Oncol 107:117–122PubMedCrossRef
136.
Andersen EK, Hole KH, Lund KV et al (2012) Dynamic contrast-enhanced MRI of cervical cancers: temporal percentile screening of contrast enhancement identifies parameters for prediction of chemoradioresistance. Int J Radiat Oncol Biol Phys 82:e485–e492PubMedCrossRef
137.
Hompland T, Lund KV, Ellingsen C, Kristensen GB, Rofstad EK (2014) Peritumoral interstitial fluid flow velocity predicts survival in cervical carcinoma. Radiother Oncol 113:132–138PubMedCrossRef
138.
Andersen EK, Kristensen GB, Lyng H, Malinen E (2011) Pharmacokinetic analysis and k-means clustering of DCEMR images for radiotherapy outcome prediction of advanced cervical cancers. Acta Oncol 50:859–865PubMedCrossRef
139.
Huang Z, Mayr NA, Lo SS et al (2012) Characterizing at-Risk Voxels by Using Perfusion Magnetic Resonance Imaging for Cervical Cancer during Radiotherapy. J Cancer Sci Ther 4:254–259PubMedPubMedCentralCrossRef
140.
Huang Z, Yuh KA, Lo SS et al (2014) Validation of optimal DCE-MRI perfusion threshold to classify at-risk tumor imaging voxels in heterogeneous cervical cancer for outcome prediction. Magn Reson Imaging 32:1198–1205PubMedPubMedCentralCrossRef
141.
Yuh WT, Mayr NA, Jarjoura D et al (2009) Predicting control of primary tumor and survival by DCE MRI during early therapy in cervical cancer. Invest Radiol 44:343–350PubMedPubMedCentralCrossRef
142.
Mayr NA, Wang JZ, Zhang D et al (2010) Longitudinal changes in tumor perfusion pattern during the radiation therapy course and its clinical impact in cervical cancer. Int J Radiat Oncol Biol Phys 77:502–508PubMedCrossRef
143.
Mayr NA, Yuh WT, Jajoura D et al (2010) Ultra-early predictive assay for treatment failure using functional magnetic resonance imaging and clinical prognostic parameters in cervical cancer. Cancer 116:903–912PubMedPubMedCentralCrossRef
144.
Mayr NA, Huang Z, Wang JZ et al (2012) Characterizing tumor heterogeneity with functional imaging and quantifying high-risk tumor volume for early prediction of treatment outcome: cervical cancer as a model. Int J Radiat Oncol Biol Phys 83:972–979PubMedCrossRef
145.
Hawighorst H, Knapstein PG, Knopp MV et al (1998) Uterine cervical carcinoma: comparison of standard and pharmacokinetic analysis of time-intensity curves for assessment of tumor angiogenesis and patient survival. Cancer Res 58:3598–3602PubMed
146.
Kim JH, Kim CK, Park BK, Park SY, Huh SJ, Kim B (2012) Dynamic contrast-enhanced 3-T MR imaging in cervical cancer before and after concurrent chemoradiotherapy. Eur Radiol 22:2533–2539PubMedCrossRef