Skip to main content
Top

01-01-2016 | Cancer pain | Book chapter | Article

3. Biology of Bone Cancer Pain

Authors: Patrick W. O’Donnell, MD, PhD, Denis R. Clohisy, MD

Publisher: Springer New York

Abstract

Bone cancer pain is a complex process with many potential targets for therapeutic intervention. As pain is the most common presenting symptom in patients with skeletal metastases and is directly proportional to the patient’s quality of life, clinical advancements in the treatment of bone cancer pain are of the utmost importance. Research targeting pain-related cytokines, anti-osteoclastic medications, and ion channels has shown significant clinical progress in the treatment of cancer-related bone pain. With continued efforts into these and other therapeutic strategies, we hope to continue to improve the quality of life of those patients suffering with bone cancer pain.
Literature
1.
Mantyh PW. Cancer pain and its impact on diagnosis, survival and quality of life. Nat Rev Neurosci. 2006;7(10):797–809.CrossRefPubMed
2.
Mercadante S, Fulfaro F. Management of painful bone metastases. Curr Opin Oncol. 2007;19(4):308–14.CrossRefPubMed
3.
Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundam Clin Pharmacol. 2011;25(1):1–28.CrossRefPubMed
4.
Mach DB, Rogers SD, Sabino MC, et al. Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience. 2002;113(1):155–66.CrossRefPubMed
5.
Martin CD, Jimenez-Andrade JM, Ghilardi JR, Mantyh PW. Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain. Neurosci Lett. 2007;427(3):148–52.PubMedCentralCrossRefPubMed
6.
White FA, Jung H, Miller RJ. Chemokines and the pathophysiology of neuropathic pain. Proc Natl Acad Sci U S A. 2007;104(51):20151–8.PubMedCentralCrossRefPubMed
7.
Yoneda T, Hata K, Nakanishi M, et al. Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone pain. Bone. 2011;48(1):100–5.CrossRefPubMed
8.
Jimenez-Andrade JM, Mantyh PW. Sensory and sympathetic nerve fibers undergo sprouting and neuroma formation in the painful arthritic joint of geriatric mice. Arthritis Res Ther. 2012;14(3):R101.PubMedCentralCrossRefPubMed
9.
Yasui M, Shiraishi Y, Ozaki N, et al. Nerve growth factor and associated nerve sprouting contribute to local mechanical hyperalgesia in a rat model of bone injury. Eur J Pain. 2012;16(7):953–65.CrossRefPubMed
10.
Latremoliere A, Woolf CJ. Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain. 2009;10(9):895–926.PubMedCentralCrossRefPubMed
11.
Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2–15.PubMedCentralCrossRefPubMed
12.
Schwei MJ, Honore P, Rogers SD, et al. Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci. 1999;19(24):10886–97.PubMed
13.
Sabino MA, Mantyh PW. Pathophysiology of bone cancer pain. J Support Oncol. 2005;3(1):15–24.PubMed
14.
Schmidt BL, Hamamoto DT, Simone DA, Wilcox GL. Mechanism of cancer pain. Mol Interv. 2010;10(3):164–78.PubMedCentralCrossRefPubMed
15.
Jimenez-Andrade JM, Bloom AP, Stake JI, et al. Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. J Neurosci. 2010;30(44):14649–56.PubMedCentralCrossRefPubMed
16.
Yanagisawa Y, Furue H, Kawamata T, et al. Bone cancer induces a unique central sensitization through synaptic changes in a wide area of the spinal cord. Mol Pain. 2010;6:38.PubMedCentralCrossRefPubMed
17.
Wang XW, Hu S, Mao-Ying QL, et al. Activation of c-jun N-terminal kinase in spinal cord contributes to breast cancer induced bone pain in rats. Mol Brain. 2012;5:21.PubMedCentralCrossRefPubMed
18.
Mantyh WG, Jimenez-Andrade JM, Stake JI, et al. Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience. 2010;171(2):588–98.PubMedCentralCrossRefPubMed
19.
McKelvey L, Shorten GD, O'Keeffe GW. Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management. J Neurochem. 2013;124(3):276–89.CrossRefPubMed
20.
Sevcik MA, Ghilardi JR, Peters CM, et al. Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain. 2005;115(1–2):128–41.CrossRefPubMed
21.
Warrington RJ, Lewis KE. Natural antibodies against nerve growth factor inhibit in vitro prostate cancer cell metastasis. Cancer Immunol Immunother. 2011;60(2):187–95.CrossRefPubMed
22.
Jimenez-Andrade JM, Ghilardi JR, Castaneda-Corral G, Kuskowski MA, Mantyh PW. Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain. 2011;152(11):2564–74.PubMedCentralCrossRefPubMed
23.
Hans G, Deseure K, Adriaensen H. Endothelin-1-induced pain and hyperalgesia: a review of pathophysiology, clinical manifestations and future therapeutic options. Neuropeptides. 2008;42(2):119–32.CrossRefPubMed
24.
Peters CM, Lindsay TH, Pomonis JD, et al. Endothelin and the tumorigenic component of bone cancer pain. Neuroscience. 2004;126(4):1043–52.CrossRefPubMed
25.
Hunt SP, Mantyh PW. The molecular dynamics of pain control. Nat Rev Neurosci. 2001;2(2):83–91.CrossRefPubMed
26.
Patil SB, Brock JH, Colman DR, Huntley GW. Neuropathic pain- and glial derived neurotrophic factor-associated regulation of cadherins in spinal circuits of the dorsal horn. Pain. 2011;152(4):924–35.CrossRefPubMed
27.
Premkumar LS. Targeting TRPV1 as an alternative approach to narcotic analgesics to treat chronic pain conditions. AAPS J. 2010;12(3):361–70.PubMedCentralCrossRefPubMed
28.
White JP, Urban L, Nagy I. TRPV1 function in health and disease. Curr Pharm Biotechnol. 2011;12(1):130–44.CrossRefPubMed
29.
Brown DC, Iadarola MJ, Perkowski SZ, et al. Physiologic and antinociceptive effects of intrathecal resiniferatoxin in a canine bone cancer model. Anesthesiology. 2005;103(5):1052–9.CrossRefPubMed
30.
Ghilardi JR, Rohrich H, Lindsay TH, et al. Selective blockade of the capsaicin receptor TRPV1 attenuates bone cancer pain. J Neurosci. 2005;25(12):3126–31.CrossRefPubMed
31.
Clohisy DR, Ramnaraine ML. Osteoclasts are required for bone tumors to grow and destroy bone. J Orthop Res. 1998;16(6):660–6.CrossRefPubMed
32.
Roudier MP, Bain SD, Dougall WC. Effects of the RANKL inhibitor, osteoprotegerin, on the pain and histopathology of bone cancer in rats. Clin Exp Metastasis. 2006;23(3–4):167–75.CrossRefPubMed
33.
Lamoureux F, Moriceau G, Picarda G, Rousseau J, Trichet V, Redini F. Regulation of osteoprotegerin pro- or anti-tumoral activity by bone tumor microenvironment. Biochim Biophys Acta. 2010;1805(1):17–24.PubMed
34.
Saad F, Mulders P. Bisphosphonate anticancer activity in prostate cancer and other genitourinary cancers. Anticancer Agents Med Chem. 2012;12(2):129–36.CrossRefPubMed
35.
Diel IJ, Kurth AH, Sittig HB, et al. Bone pain reduction in patients with metastatic breast cancer treated with ibandronate-results from a post-marketing surveillance study. Support Care Cancer. 2010;18(10):1305–12.CrossRefPubMed
36.
Saad F, Eastham J. Zoledronic acid improves clinical outcomes when administered before onset of bone pain in patients with prostate cancer. Urology. 2010;76(5):1175–81.CrossRefPubMed
37.
Broom R, Du H, Clemons M, et al. Switching breast cancer patients with progressive bone metastases to third-generation bisphosphonates: measuring impact using the functional assessment of cancer therapy-bone pain. J Pain Symptom Manage. 2009;38(2):244–57.CrossRefPubMed
38.
Namazi H. Zoledronic acid and survival in patients with metastatic bone disease from lung cancer and elevated markers of osteoclast activity: a novel molecular mechanism. J Thorac Oncol. 2008;3(8):943–4.CrossRefPubMed
39.
Zhu M, Liang R, Pan LH, et al. Zoledronate for metastatic bone disease and pain: a meta-analysis of randomized clinical trials. Pain Med. 2013;14(2):257–64.CrossRefPubMed
40.
Stopeck AT, Lipton A, Body JJ, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–9.CrossRefPubMed
41.
Fizazi K, Carducci M, Smith M, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377(9768):813–22.PubMedCentralCrossRefPubMed
42.
Ford JA, Jones R, Elders A, et al. Denosumab for treatment of bone metastases secondary to solid tumours: systematic review and network meta-analysis. Eur J Cancer. 2013;49(2):416–30.CrossRefPubMed