Skip to main content
Top

12-12-2017 | Breast cancer | Article

Biomarkers of aging associated with past treatments in breast cancer survivors

Journal: npj Breast Cancer

Authors: Zorica Scuric, Judith E. Carroll, Julienne E. Bower, Sam Ramos-Perlberg, Laura Petersen, Stephanie Esquivel, Matt Hogan, Aaron M. Chapman, Michael R. Irwin, Elizabeth C. Breen, Patricia A. Ganz, Robert Schiestl

Publisher: Nature Publishing Group UK

Abstract

Radiation and chemotherapy are effective treatments for cancer, but are also toxic to healthy cells. Little is known about whether prior exposure to these treatments is related to markers of cellular aging years later in breast cancer survivors. We examined whether past exposure to chemotherapy and/or radiation treatment was associated with DNA damage, telomerase activity, and telomere length 3–6 years after completion of primary treatments in breast cancer survivors (stage 0–IIIA breast cancer at diagnosis). We also examined the relationship of these cellular aging markers with plasma levels of Interleukin (IL)-6, soluble TNF-receptor-II (sTNF-RII), and C-reactive protein (CRP). Ninety-four women (36.4–69.5 years; 80% white) were evaluated. Analyses adjusting for age, race, BMI, and years from last treatment found that women who had prior exposure to chemotherapy and/or radiation compared to women who had previously received surgery alone were more likely to have higher levels of DNA damage (P = .02) and lower telomerase activity (P = .02), but did not have differences in telomere length. More DNA damage and lower telomerase were each associated with higher levels of sTNF-RII (P’s < .05). We found that exposure to chemotherapy and/or radiation 3–6 years prior was associated with markers of cellular aging, including higher DNA damage and lower telomerase activity, in post-treatment breast cancer survivors. Furthermore, these measures were associated with elevated inflammatory activation, as indexed by sTNF-RII. Given that these differences were observed many years after the treatment, the findings suggest a long lasting effect of chemotherapy and/or radiation exposure.
Literature
1.
Parry, C., Kent, E. E., Mariotto, A. B., Alfano, C. M. & Rowland, J. H. Cancer survivors: a booming population. Cancer Epidemiol. Biomarkers Prev. 20, 1996–2005 (2011).CrossRefPubMedPubMedCentral
2.
de Moor, J. S. et al. Cancer survivors in the United States: prevalence across the survivorship trajectory and implications for care. Cancer Epidemiol. Biomarkers Prev. 22, 561–570 (2013).CrossRefPubMedPubMedCentral
3.
Runowicz, C. D. et al. American cancer society/American society of clinical oncology breast cancer survivorship care guideline. J. Clin. Oncol. 34, 611–635 (2016).CrossRefPubMed
4.
Yeh, J. M., Nekhlyudov, L., Goldie, S. J., Mertens, A. C. & Diller, L. A model-based estimate of cumulative excess mortality in survivors of childhood cancer. Ann. Intern. Med. 152, 409–417, W131–W138 (2010).CrossRefPubMedPubMedCentral
5.
Henderson, T. O., Ness, K. K. & Cohen, H. J. Accelerated aging among cancer survivors: from pediatrics to geriatrics. Am. Soc. Clin. Oncol. Educ. B 34, e423–e430 (2014).CrossRef
6.
Armstrong, G. T. et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J. Clin. Oncol. 32, 1218–1227 (2014).CrossRefPubMedPubMedCentral
7.
Oeffinger, K. C. et al. Chronic health conditions in adult survivors of childhood cancer. N. Engl. J. Med. 355, 1572–1582 (2006).CrossRefPubMed
8.
Shad, A., Myers, S. N. & Hennessy, K. Late effects in cancer survivors: ‘the shared care model’. Curr. Oncol. Rep. 14, 182–190 (2012).CrossRefPubMed
9.
Rowland, J. H. & Bellizzi, K. M. Cancer survivors and survivorship research: a reflection on today’s successes and tomorrow’s challenges. Hematol. Oncol. Clin. North Am. 22, 181–200 (2008).CrossRefPubMed
10.
Maccormick, R. E. Possible acceleration of aging by adjuvant chemotherapy: a cause of early onset frailty? Med. Hypotheses 67, 212–215 (2006).CrossRefPubMed
11.
Kiecolt-Glaser, J. K. et al. Yoga’s impact on inflammation, mood, and fatigue in breast cancer survivors: a randomized controlled trial. J. Clin. Oncol. 32, 1040–1049 (2014).CrossRefPubMedPubMedCentral
12.
Alfano, C. M. et al. Inflammatory cytokines and comorbidity development in breast cancer survivors versus noncancer controls: evidence for accelerated aging? J. Clin. Oncol. 34, 149–156 (2016).
13.
Bluethmann, S. M., Mariotto, A. B. & Rowland, J. H. Anticipating the ‘Silver Tsunami’: prevalence trajectories and comorbidity burden among older cancer survivors in the United States. Cancer Epidemiol. Biomarkers Prev. 25, 1029–1036 (2016).CrossRefPubMedPubMedCentral
14.
Ness, K. K. et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer: a report from the St Jude lifetime cohort study. J. Clin. Oncol. 31, 4496–4503 (2013).CrossRefPubMedPubMedCentral
15.
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013).CrossRefPubMedPubMedCentral
16.
Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).CrossRefPubMedPubMedCentral
17.
Rodier, F. et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nat. Cell Biol. 11, 973–979 (2009).CrossRefPubMedPubMedCentral
18.
Campisi, J. & d’Adda di Fagagna, F. Cellular senescence: when bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 8, 729–740 (2007).CrossRefPubMed
19.
Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).CrossRefPubMed
20.
Franceschi, C. & Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. A Biol. Sci. Med. Sci. 69, S4–S9 (2014).CrossRefPubMed
21.
Demaria, M. et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 7, 165–176 (2017).CrossRefPubMed
22.
Conroy, S. K. et al. Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Res. Treat. 137, 493–502 (2013).CrossRefPubMed
23.
Sanoff, H. K. et al. Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J. Natl. Cancer Inst. 106, dju057 (2014).CrossRefPubMedPubMedCentral
24.
Bower, J. E. et al. Inflammatory biomarkers and fatigue during radiation therapy for breast and prostate cancer. Clin. Cancer Res. 15, 5534–5540 (2009).CrossRefPubMedPubMedCentral
25.
Bower, J. E. et al. Inflammation and behavioral symptoms after breast cancer treatment: do fatigue, depression, and sleep disturbance share a common underlying mechanism? J. Clin. Oncol. 29, 3517–3522 (2011).CrossRefPubMedPubMedCentral
26.
Collado-Hidalgo, A., Bower, J. E., Ganz, P. A., Cole, S. W. & Irwin, M. R. Inflammatory biomarkers for persistent fatigue in breast cancer survivors. Clin. Cancer Res. 12, 2759–2766 (2006).CrossRefPubMed
27.
Irwin, M. R., Olmstead, R. E., Ganz, P. A. & Haque, R. Sleep disturbance, inflammation and depression risk in cancer survivors. Brain Behav. Immun. 30, S58–S67 (2013).CrossRefPubMed
28.
Blackburn, E. H. Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett. 579, 859–862 (2005).CrossRefPubMed
29.
Brouwers, B. et al. The impact of adjuvant chemotherapy in older breast cancer patients on clinical and biological aging parameters. Oncotarget https://​doi.​org/​10.​18632/​oncotarget.​8796 (2016).PubMedPubMedCentral
30.
Pooley, K. A. et al. Telomere length in prospective and retrospective cancer case-control studies. Cancer Res. 70, 3170–3176 (2010).CrossRefPubMedPubMedCentral
31.
Schröder, C. P. et al. Telomere length in breast cancer patients before and after chemotherapy with or without stem cell transplantation. Br. J. Cancer 84, 1348–1353 (2001).CrossRefPubMedPubMedCentral
32.
Unryn, B. M., Hao, D., Glück, S. & Riabowol, K. T. Acceleration of telomere loss by chemotherapy is greater in older patients with locally advanced head and neck cancer. Clin. Cancer Res. 12, 6345–6350 (2006).CrossRefPubMed
33.
Ganz, P. A. et al. Does tumor necrosis factor-alpha (TNF-α) play a role in post-chemotherapy cerebral dysfunction? Brain Behav. Immun. 30, S99–S108 (2013).CrossRefPubMed
34.
Van Zee, K. J. et al. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc. Natl. Acad. Sci. USA 89, 4845–4849 (1992).CrossRefPubMedPubMedCentral
35.
Faustman, D. L. & Davis, M. TNF receptor 2 and disease: autoimmunity and regenerative medicine. Front. Immunol. 4, 478 (2013).CrossRefPubMedPubMedCentral
36.
Lee, M., Martin, H., Firpo, M. A. & Demerath, E. W. Inverse association between adiposity and telomere length: the fels longitudinal study. Am. J. Hum. Biol. https://​doi.​org/​10.​1002/​ajhb.​21109 (2010).
37.
Chapman, A. M., Malkin, D. J., Camacho, J. & Schiestl, R. H. IL-13 overexpression in mouse lungs triggers systemic genotoxicity in peripheral blood. Mutat. Res. Fundam. Mol. Mech. Mutagen. 769, 100–107 (2014).CrossRef
38.
Morreall, J. et al. Inactivation of a common OGG1 variant by TNF-alpha in mammalian cells. DNA Repair 26, 15–22 (2015).CrossRefPubMed
39.
Broer, L. et al. Meta-analysis of telomere length in 19 713 subjects reveals high heritability, stronger maternal inheritance and a paternal age effect. Eur. J. Hum. Genet. https://​doi.​org/​10.​1038/​ejhg.​2012.​303 (2013).PubMedPubMedCentral
40.
Codd, V. et al. Common variants near TERC are associated with mean telomere length. Nat. Genet. 42, 197–199 (2010).CrossRefPubMedPubMedCentral
41.
Jurk, D. et al. Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nat. Commun. 2, 4172 (2014).CrossRefPubMedPubMedCentral
42.
Ganz, P. A. et al. Cognitive complaints after breast cancer treatments: examining the relationship with neuropsychological test performance. J. Natl. Cancer Inst. 105, 791–801 (2013).CrossRefPubMedPubMedCentral
43.
Ganz, P. A., Petersen, L., Bower, J. E. & Crespi, C. M. Impact of adjuvant endocrine therapy on quality of life and symptoms: observational data over 12 months from the mind-body study. J. Clin. Oncol. 34, 816–824 (2016).CrossRefPubMedPubMedCentral
44.
Ganz, P. A. et al. Cognitive function after the initiation of adjuvant endocrine therapy in early-stage breast cancer: an observational cohort study. J. Clin. Oncol. 32, 3559–3567 (2014).CrossRefPubMedPubMedCentral
45.
Singh, N. P., McCoy, M. T., Tice, R. R. & Schneider, E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191 (1988).CrossRefPubMed
46.
Valenzuela, H. F. & Effros, R. B. Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin. Immunol. 105, 117–125 (2002).CrossRefPubMed
47.
Kim, N. W. & Wu, F. Advances in quantification and characterization of telomerase activity by the telomeric repeat amplification protocol (TRAP). Nucleic Acids Res. 25, 2595–2597 (1997).CrossRefPubMedPubMedCentral
48.
Robles, T. F. et al. Emotions and family interactions in childhood: associations with leukocyte telomere length. Psychoneuroendocrinology 63, 343–350 (2016).CrossRefPubMed
49.
Carroll, J. E. et al. Insomnia and telomere length in older adults. Sleep 39, 559–564 (2016).CrossRefPubMedPubMedCentral
50.
Cawthon, R. M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 30, 47e–47 (2002).CrossRef