Skip to main content
Top

17-10-2017 | Breast cancer | Article

The importance of early detection of calcifications associated with breast cancer in screening

Journal: Breast Cancer Research and Treatment

Authors: J. J. Mordang, A. Gubern-Mérida, A. Bria, F. Tortorella, R. M. Mann, M. J. M. Broeders, G. J. den Heeten, N. Karssemeijer

Publisher: Springer US

Abstract

Purpose

The aim of this study was to assess how often women with undetected calcifications in prior screening mammograms are subsequently diagnosed with invasive cancer.

Methods

From a screening cohort of 63,895 women, exams were collected from 59,690 women without any abnormalities, 744 women with a screen-detected cancer and a prior negative exam, 781 women with a false positive exam based on calcifications, and 413 women with an interval cancer. A radiologist identified cancer-related calcifications, selected by a computer-aided detection system, on mammograms taken prior to screen-detected or interval cancer diagnoses. Using this ground truth and the pathology reports, the sensitivity for calcification detection and the proportion of lesions with visible calcifications that developed into invasive cancer were determined.

Results

The screening sensitivity for calcifications was 45.5%, at a specificity of 99.5%. A total of 68.4% (n = 177) of cancer-related calcifications that could have been detected earlier were associated with invasive cancer when diagnosed.

Conclusions

Screening sensitivity for detection of malignant calcifications is low. Improving the detection of these early signs of cancer is important, because the majority of lesions with detectable calcifications that are not recalled immediately but detected as interval cancer or in the next screening round are invasive at the time of diagnosis.
Literature
1.
Tabár L, Gad A, Holmberg L et al (1985) Reduction in mortality from breast cancer after mass screening with mammography. Lancet 325:829–832. doi:10.​1016/​S0140-6736(85)92204-4 CrossRef
2.
Tabár L, Vitak B, Chen TH-H et al (2011) Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology 260:658–663. doi:10.​1148/​radiol.​11110469 CrossRefPubMed
3.
Stomper PC, Geradts J, Edge SB, Levine EG (2003) Mammographic predictors of the presence and size of invasive carcinomas associated with malignant microcalcification lesions without a mass. Am J Roentgenol 181:1679–1684. doi:10.​2214/​ajr.​181.​6.​1811679 CrossRef
4.
Del Turco MR, Mantellini P, Ciatto S et al (2007) Full-field digital versus screen-film mammography: comparative accuracy in concurrent screening cohorts. Am J Roentgenol 189:860–866. doi:10.​2214/​AJR.​07.​2303 CrossRef
5.
Domingo L, Romero A, Belvis F et al (2011) Differences in radiological patterns, tumour characteristics and diagnostic precision between digital mammography and screen-film mammography in four breast cancer screening programmes in Spain. Eur Radiol 21:2020–2028. doi:10.​1007/​s00330-011-2143-1 CrossRefPubMed
6.
Karssemeijer N, Bluekens AM, Beijerinck D et al (2009) Breast cancer screening results 5 years after introduction of digital mammography in a population-based screening program. Radiology 253:353–358. doi:10.​1148/​radiol.​2532090225 CrossRefPubMed
7.
Hambly NM, McNicholas MM, Phelan N et al (2009) Comparison of digital mammography and screen-film mammography in breast cancer screening: a review in the Irish breast screening program. Am J Roentgenol 193:1010–1018. doi:10.​2214/​AJR.​08.​2157 CrossRef
8.
D’Orsi CJ, E.A.Sickles, Mendelson EB, et al. EAM (2013) ACR BI-RADS atlas, breast imaging reporting and data system
9.
Bijker N, Donker M, Wesseling J et al (2013) Is DCIS breast cancer, and how do i treat it? Curr Treat Options Oncol 14:75–87. doi:10.​1007/​s11864-012-0217-1 CrossRefPubMed
10.
Weigel S, Hense HW, Heidrich J et al (2015) Digital mammography screening: does age influence the detection rates of low-, intermediate-, and high-grade ductal carcinoma in situ? Radiology 278:707–713. doi:10.​1148/​radiol.​2015150322 CrossRefPubMed
11.
van Luijt PA, Heijnsdijk EAM, Fracheboud J et al (2016) The distribution of ductal carcinoma in situ (DCIS) grade in 4232 women and its impact on overdiagnosis in breast cancer screening. Breast Cancer Res 18:47. doi:10.​1186/​s13058-016-0705-5 CrossRefPubMedPubMedCentral
12.
Groen EJ, Elshof LE, Visser LL et al (2016) Finding the balance between over- and under-treatment of ductal carcinoma in situ (DCIS). Breast. doi:10.​1016/​j.​breast.​2016.​09.​001 PubMed
13.
Tabár L, Chen HH, Duffy SW et al (2000) A novel method for prediction of long-term outcome of women with T1a, T1b, and 10–14 mm invasive breast cancers: a prospective study. Lancet 355:429–433. doi:10.​1016/​S0140-6736(00)82008-5 CrossRefPubMed
14.
Bansal GJ, Thomas KG (2011) Screen-detected breast cancer: does presence of minimal signs on prior mammograms predict staging or grading of cancer? Clin Radiol 66:605–608. doi:10.​1016/​j.​crad.​2011.​02.​003 CrossRefPubMed
15.
Baker R, Rogers KD, Shepherd N, Stone N (2010) New relationships between breast microcalcifications and cancer. Br J Cancer 103:1034–1039. doi:10.​1038/​sj.​bjc.​6605873 CrossRefPubMedPubMedCentral
16.
Van Luijt PA, Fracheboud J, Heijnsdijk EAM et al (2013) Nation-wide data on screening performance during the transition to digital mammography: observations in 6 million screens. Eur J Cancer 49:3517–3525. doi:10.​1016/​j.​ejca.​2013.​06.​020 CrossRefPubMed
17.
Bird RE, Wallace TW, Yankaskas BC (1992) Breast imaging missed at screening mammography. Radiology 184:613–617CrossRefPubMed
18.
van Dijck JA, Verbeek AL, Hendriks JH, Holland R (1993) The current detectability of breast cancer in a mammographic screening program. A review of the previous mammograms of interval and screen-detected cancers. Cancer 72:1933–1938. doi:10.​1002/​1097-0142(19930915)72:​6<1933:​AID-CNCR2820720623>3​.​0.​CO;2-N CrossRefPubMed
19.
Vitak B (1998) Invasive interval cancers in the Ostergötland mammographic screening programme: radiological analysis. Eur Radiol 8:639–646. doi:10.​1007/​s003300050452 CrossRefPubMed
20.
Duncan KA, Needham G, Gilbert FJ, Deans HE (1998) Incident round cancers: what lessons can we learn? Clin Radiol 53:29–32. doi:10.​1016/​S0009-9260(98)80030-5 CrossRefPubMed
21.
Daly CA, Apthorp L, Field S (1998) Second round cancers: how many were visible on the first round of the UK National breast screening programme, three years earlier? Clin Radiol 53:25–28. doi:10.​1016/​S0009-9260(98)80029-9 CrossRefPubMed
22.
Saarenmaa I, Salminen T, Geiger U et al (2001) The visibility of cancer on previous mammograms in retrospective review. Clin Radiol 56:40–43. doi:10.​1053/​crad.​2000.​0567 CrossRefPubMed
23.
Zheng B, Shah R, Wallace L et al (2002) Computer-aided detection in mammography: an assessment of performance on current and prior images. Acad Radiol 9:1245–1250. doi:10.​1016/​S1076-6332(03)80557-3 CrossRefPubMed
24.
Broeders MJM, Onland-Moret NC, Rijken HJTM et al (2003) Use of previous screening mammograms to identify features indicating cases that would have a possible gain in prognosis following earlier detection. Eur J Cancer 39:1770–1775. doi:10.​1016/​S0959-8049(03)00311-3 CrossRefPubMed
25.
Destounis SV, DiNitto P, Logan-Young W et al (2004) Can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate? Initial experience. Radiology 232:578–584. doi:10.​1148/​radiol.​2322030034 CrossRefPubMed
26.
Knox M, O’Brien A, Szabó E et al (2015) Impact of full field digital mammography on the classification and mammographic characteristics of interval breast cancers. Eur J Radiol 84:1056–1061. doi:10.​1016/​j.​ejrad.​2015.​03.​007 CrossRefPubMed
27.
Weber RJP, van Bommel RMG, Louwman MW et al (2016) Characteristics and prognosis of interval cancers after biennial screen-film or full-field digital screening mammography. Breast Cancer Res Treat. doi:10.​1007/​s10549-016-3882-0
28.
Warren Burhenne LJ, Wood S, D’Orsi CJ et al (2000) Potential contribution of computer-aided detection to the sensitivity of screening mammography. Radiology 215:554–562. doi:10.​1148/​radiology.​215.​2.​r00ma15554 CrossRefPubMed
29.
Dinitto P, Logan-young W, Bonaccio E et al (2004) Breast imaging can computer-aided detection with double reading of screening mammograms help decrease the false-negative rate ? Initial experience 1. Radiology 232:578–584. doi:10.​1148/​radiol.​2322030034 CrossRefPubMed
30.
Bluekens AMJ, Holland R, Karssemeijer N et al (2012) Comparison of digital screening mammography and screen-film mammography in the early detection of clinically relevant cancers: a multicenter study. Radiology 265:707–714. doi:10.​1148/​radiol.​12111461 CrossRefPubMed
31.
Holland R, Rijken H, Hendriks J (2007) The dutch population-based mammography screening: 30-year experience. Breast Care 2:12–18CrossRef
32.
Bria A, Karssemeijer N, Tortorella F (2014) Learning from unbalanced data: a cascade-based approach for detecting clustered microcalcifications. Med Image Anal 18:241–252. doi:10.​1016/​j.​media.​2013.​10.​014 CrossRefPubMed
33.
Bria A, Marrocco C, Karssemeijer N et al (2016) Deep cascade classifiers to detect clusters of microcalcifications. In: Tingberg A (ed) Breast imaging. Springer International Publishing, Switzerland, pp 415–422
34.
Brierley JD, Gospodarowicz MK, Wittekind C (2016) TNM classification of malignant tumours. Wiley, Hoboken
35.
Jiang Y, Nishikawa RM, Wolverton DE et al (1996) Malignant and benign clustered microcalcifications: automated feature analysis and classification. Radiology 198:671–678. doi:10.​1148/​radiology.​198.​3.​8628853 CrossRefPubMed
36.
Veldkamp WJ, Karssemeijer N, Otten JD, Hendriks JH (2000) Automated classification of clustered microcalcifications into malignant and benign types. Med Phys 27:2600–2608. doi:10.​1118/​1.​1318221 CrossRefPubMed
37.
Veldkamp WJ, Karssemeijer N, Hendriks JHC (2001) Experiments with radiologists and a fully automated method for characterization of microcalcification clusters. Int Congr Ser 1230:586–592. doi:10.​1016/​S0531-5131(01)00103-0 CrossRef
38.
Rana RS, Jiang Y, Schmidt RA et al (2007) Independent evaluation of computer classification of malignant and benign calcifications in full-field digital mammograms. Acad Radiol 14:363–370. doi:10.​1016/​j.​acra.​2006.​12.​012 CrossRefPubMedPubMedCentral
39.
Hung WT, Nguyen HT, Lee WB et al (2003) Diagnostic abilities of three CAD methods for assessing microcalcifications in mammograms and an aspect of equivocal cases decisions by radiologists. Australas Phys Eng Sci Med 26:104–109. doi:10.​1007/​BF03178778 CrossRefPubMed
40.
Jiang Y, Nishikawa RM, Schmidt RA et al (2001) Potential of computer-aided diagnosis to reduce variability in radiologists’ interpretations of mammograms depicting microcalcifications. Radiology 220:787–794. doi:10.​1148/​radiol.​220001257 CrossRefPubMed
41.
Arikidis N, Vassiou K, Kazantzi A et al (2015) A two-stage method for microcalcification cluster segmentation in mammography by deformable models. Med Phys 42:5848–5861. doi:10.​1118/​1.​4930246 CrossRefPubMed
42.
Smith-Bindman R, Chu PW, Miglioretti DL et al (2003) Comparison of screening mammography in the United States and the United kingdom. JAMA 290:2129–2137. doi:10.​1001/​jama.​290.​16.​2129 CrossRefPubMed
43.
Fracheboud J, van Luijt PA, Sankatsing VDV, et al (2014) Landelijke evaluatie van bevolkingsonderzoek naar borstkanker in Nederland 1990-2011/2012. Herziene dertiende versie 102