Skip to main content
Top

27-07-2017 | Breast cancer | Book chapter | Article

9. Liquid Biopsy in Breast Cancer

Authors: Lorena Incorvaia, Marta Castiglia, Alessandro Perez, Daniela Massihnia, Stefano Caruso, MD, PhD, Sevilay Altintas, Valentina Calò, Antonio Russo, MD, PhD

Publisher: Springer International Publishing

Abstract

Breast cancer (BC) to date remains the most common cancer in women. Nowadays, BC is often diagnosed at local disease stage, and, after surgery, based on individual’s risk of relapse, the patients undergo adjuvant systemic treatment to decrease the risk of recurrence. Current BC classification and assessment remain strongly based on clinicopathological criteria, including patient age, tumor size, lymph node invasion, histological type, and grade. According to standard practice, the choice of treatment strategy includes assays for estrogen (ER) and progesterone (PgR) receptor expression levels, overexpression of human epidermal growth factor receptor 2 (Her-2), or amplification status of the correlate oncogene, but also histological grade and Ki67 to evaluate proliferation of tumor cells. Nevertheless, the established clinicopathological parameters are not sufficient anymore for clinical decision-making and should be combined with genomic profiling to estimate recurrence risk and identify high-risk BC patients (prognostic value) and predict optimal treatment for each disease subgroup (predictive value). The information obtained from standard tumor tissue sampling cannot be the same for the whole tumor and offer a static picture of disease. The constant molecular change of tumor cell population, spatial and temporal, requires a noninvasive approach, for real-time picture of disease. Liquid biopsy is a useful tool to follow the continuously evolving genomic landscape of breast cancer.
Literature
1.
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–86.CrossRefPubMed
2.
Reis-Filho JS, Pusztai L. Gene expression profiling in breast cancer: classification, prognostication, and prediction. Lancet. 2011;378(9805):1812–23.CrossRefPubMed
3.
Network CGA. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.CrossRef
4.
Eroles P, Bosch A, Pérez-Fidalgo JA, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev. 2012;38(6):698–707.CrossRefPubMed
5.
Bedard PL, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature. 2013;501(7467):355–64.CrossRefPubMedPubMedCentral
6.
Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 2013;501(7467):338–45.CrossRefPubMed
7.
Curtit E, Nerich V, Mansi L, et al. Discordances in estrogen receptor status, progesterone receptor status, and HER2 status between primary breast cancer and metastasis. Oncologist. 2013;18(6):667–74.CrossRefPubMedPubMedCentral
8.
De Mattos-Arruda L, Weigelt B, Cortes J, et al. Capturing intra-tumor genetic heterogeneity by de novo mutation profiling of circulating cell-free tumor DNA: a proof-of-principle. Ann Oncol. 2014;25(9):1729–35.CrossRefPubMed
9.
De Mattos-Arruda L, Caldas C. Cell-free circulating tumour DNA as a liquid biopsy in breast cancer. Mol Oncol. 2016;10(3):464–74.CrossRefPubMed
10.
Diehl F, Schmidt K, Choti MA, et al. Circulating mutant DNA to assess tumor dynamics. Nat Med. 2008;14(9):985–90.CrossRefPubMed
11.
Loman N, Saal LH. The state of the art in prediction of breast cancer relapse using cell-free circulating tumor DNA liquid biopsies. Ann Transl Med. 2016;4(Suppl 1):S68.CrossRefPubMedPubMedCentral
12.
Catarino R, Ferreira MM, Rodrigues H, et al. Quantification of free circulating tumor DNA as a diagnostic marker for breast cancer. DNA Cell Biol. 2008;27(8):415–21.CrossRefPubMed
13.
Canzoniero JV, Park BH. Use of cell free DNA in breast oncology. Biochim Biophys Acta. 2016;1865(2):266–74.PubMed
14.
Chimonidou M, Tzitzira A, Strati A, et al. CST6 promoter methylation in circulating cell-free DNA of breast cancer patients. Clin Biochem. 2013;46(3):235–40.CrossRefPubMed
15.
Dulaimi E, Hillinck J. Ibanez de Caceres I, Al-Saleem T, cairns P. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res. 2004;10(18 Pt 1):6189–93.CrossRefPubMed
16.
Oshiro C, Kagara N, Naoi Y, et al. PIK3CA mutations in serum DNA are predictive of recurrence in primary breast cancer patients. Breast Cancer Res Treat. 2015;150(2):299–307.CrossRefPubMed
17.
Board RE, Wardley AM, Dixon JM, et al. Detection of PIK3CA mutations in circulating free DNA in patients with breast cancer. Breast Cancer Res Treat. 2010;120(2):461–7.CrossRefPubMed
18.
Bettegowda C, Sausen M, Leary RJ, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra224.CrossRef
19.
Iqbal S, Vishnubhatla S, Raina V, et al. Circulating cell-free DNA and its integrity as a prognostic marker for breast cancer. Springerplus. 2015;4:265.CrossRefPubMedPubMedCentral
20.
Bechmann T, Andersen RF, Pallisgaard N, et al. Plasma HER2 amplification in cell-free DNA during neoadjuvant chemotherapy in breast cancer. J Cancer Res Clin Oncol. 2013;139(6):995–1003.CrossRefPubMed
21.
Madic J, Kiialainen A, Bidard FC, et al. Circulating tumor DNA and circulating tumor cells in metastatic triple negative breast cancer patients. Int J Cancer. 2015;136(9):2158–65.CrossRefPubMed
22.
Forshew T, Murtaza M, Parkinson C, et al. Noninvasive identification and monitoring of cancer mutations by targeted deep sequencing of plasma DNA. Sci Transl Med. 2012;4(136):136ra168.CrossRef
23.
Dawson SJ, Tsui DW, Murtaza M, et al. Analysis of circulating tumor DNA to monitor metastatic breast cancer. N Engl J Med. 2013;368(13):1199–209.CrossRefPubMed
24.
Arnedos M, Vicier C, Loi S, et al. Precision medicine for metastatic breast cancer--limitations and solutions. Nat Rev Clin Oncol. 2015;12(12):693–704.CrossRefPubMed
25.
Martelotto LG, Ng CK, Piscuoglio S, Weigelt B, Reis-Filho JS. Breast cancer intra-tumor heterogeneity. Breast Cancer Res. 2014;16(3):210.CrossRefPubMedPubMedCentral
26.
Aparicio S, Caldas C. The implications of clonal genome evolution for cancer medicine. N Engl J Med. 2013;368(9):842–51.CrossRefPubMed
27.
Tachtsidis A, McInnes LM, Jacobsen N, Thompson EW, Saunders CM. Minimal residual disease in breast cancer: an overview of circulating and disseminated tumour cells. Clin Exp Metastasis. 2016;33(6):521–50.CrossRefPubMedPubMedCentral
28.
Siravegna G, Bardelli A. Minimal residual disease in breast cancer: in blood veritas. Clin Cancer Res. 2014a;20(10):2505–7.CrossRefPubMed
29.
Siravegna G, Bardelli A. Genotyping cell-free tumor DNA in the blood to detect residual disease and drug resistance. Genome Biol. 2014b;15(8):449.CrossRefPubMedPubMedCentral
30.
Beaver JA, Jelovac D, Balukrishna S, et al. Detection of cancer DNA in plasma of patients with early-stage breast cancer. Clin Cancer Res. 2014;20(10):2643–50.CrossRefPubMedPubMedCentral
31.
Garcia-Murillas I, Schiavon G, Weigelt B, Ng C, Hrebien S, Cutts RJ, Cheang M, Osin P, Nerurkar A, Kozarewa I, Garrido JA, Dowsett M, Reis-Filho JS, Smith IE, Turner NC. Mutation tracking in circulating tumor DNA predicts relapse in early breast cancer. Sci Transl Med. 2015 Aug 26;7(302):302ra133.
32.
Riva F, Bidard FC, Houy A, et al. Patient-specific circulating tumor DNA detection during neoadjuvant chemotherapy in triple-negative breast cancer. Clin Chem. 2017 Mar;63(3):691–9.
33.
Agelaki S, Dragolia M, Markonanolaki H, et al. Phenotypic characterization of circulating tumor cells in triple negative breast cancer patients. Oncotarget. 2017 Jan 17;8(3):5309–22.
34.
Bidard FC, Peeters DJ, Fehm T, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol. 2014;15(4):406–14.CrossRefPubMed